Exoplanets

Optical properties of organic haze analogues in water-rich exoplanet atmospheres observable with JWST

  • Kreidberg, L. et al. Clouds in the atmosphere of the super-Earth exoplanet GJ1214b. Nature 505, 69–72 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Knutson, H. A., Benneke, B., Deming, D. & Homeier, D. A featureless transmission spectrum for the Neptune-mass exoplanet GJ436b. Nature 505, 66–68 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Knutson, H. A. et al. Hubble space telescope near-IR transmission spectroscopy of the super-Earth HD 97658b. Astrophys. J. 794, 155 (2014).

    Article 
    ADS 

    Google Scholar
     

  • May, E. M., Gardner, T., Rauscher, E. & Monnier, J. D. MOPSS. II. Extreme optical scattering slope for the inflated super-Neptune HATS-8b. Astron. J. 159, 7 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Dragomir, D. et al. Rayleigh scattering in the atmosphere of the warm exo-Neptune GJ 3470b. Astrophys. J. 814, 102 (2015).

    Article 
    ADS 

    Google Scholar
     

  • JWST Transiting Exoplanet Community Early Release Science Team Identification of carbon dioxide in an exoplanet atmosphere. Nature 614, 649–652 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Gao, P. et al. Aerosol composition of hot giant exoplanets dominated by silicates and hydrocarbon hazes. Nat. Astron. 4, 951–956 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Morley, C. V. et al. Quantitatively assessing the role of clouds in the transmission spectrum of GJ 1214b. Astrophys. J. 775, 33 (2013).

    Article 
    ADS 

    Google Scholar
     

  • He, C. et al. Photochemical haze formation in the atmospheres of super-Earths and mini-Neptunes. Astron. J. 156, 38 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Hörst, S. M. et al. Haze production rates in super-Earth and mini-Neptune atmosphere experiments. Nat. Astron. 2, 303–306 (2018).

    Article 
    ADS 

    Google Scholar
     

  • He, C. et al. Sulfur-driven haze formation in warm CO2-rich exoplanet atmospheres. Nat. Astron. 4, 986–993 (2020).

    Article 
    ADS 

    Google Scholar
     

  • He, C. et al. Haze formation in warm H2-rich exoplanet atmospheres. Planet. Sci. J. 1, 51 (2020).

    Article 

    Google Scholar
     

  • Gao, P., Wakeford, H. R., Moran, S. E. & Parmentier, V. Aerosols in exoplanet atmospheres. J. Geophys. Res. Planets 126, e06655 (2021).

    Article 

    Google Scholar
     

  • Khare, B. N. et al. Optical constants of organic tholins produced in a simulated Titanian atmosphere: from soft X-ray to microwave frequencies. Icarus 60, 127–137 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Chang, H. & Charalampopoulos, T. T. Determination of the wavelength dependence of refractive indices of flame soot. Proc. R. Soc. Lond. A 430, 577–591 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Lavvas, P. & Koskinen, T. Aerosol properties of the atmospheres of extrasolar giant planets. Astrophys. J. 847, 32 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Morley, C. V. et al. Thermal emission and reflected light spectra of super Earths with flat transmission spectra. Astrophys. J. 815, 110 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Moran, S. E. et al. Chemistry of temperate super-Earth and mini-Neptune atmospheric hazes from laboratory experiments. Planet. Sci. J. 1, 17 (2020).

    Article 

    Google Scholar
     

  • Tsiaras, A., Waldmann, I. P., Tinetti, G., Tennyson, J. & Yurchenko, S. N. Water vapour in the atmosphere of the habitable-zone eight-Earth-mass planet K2-18b. Nat. Astron. 3, 1086–1091 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Benneke, B. et al. Water vapor and clouds on the habitable-zone sub-Neptune exoplanet K2-18b. Astrophys. J. Lett. 887, L14 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Mulders, G., Ciesla, F., Min, M. & Pascucci, I. The snow line in viscous disks around low-mass stars: implications for water delivery to terrestrial planets in the habitable zone. Astrophys. J. 807, 9–15 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Kite, E. S. & Ford, E. B. Habitability of exoplanet waterworlds. Astrophys. J. 864, 75–102 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zeng, L. et al. Growth model interpretation of planet size distribution. Proc. Natl Acad. Sci. USA 116, 9723–9728 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kite, E. S. & Schaefer, L. Water on hot rocky exoplanets. Astrophys. J. Lett. 909, L22 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Luque, R. & Pallé, E. Density, not radius, separates rocky and water-rich small planets orbiting M dwarf stars. Science 377, 1211–1214 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Chachan, Y. et al. A featureless infrared transmission spectrum for the super-puff planet Kepler-79d. Astrophys. J. 160, 201 (2020).


    Google Scholar
     

  • Libby-Roberts, J. E. et al. The featureless transmission spectra of two super-puff planets. Astron. J. 159, 57 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Adams, D., Gao, P., de Pater, I. & Morley, C. V. Aggregate hazes in exoplanet atmospheres. Astrophys. J. 874, 61 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Gao, P. & Zhang, X. Deflating super-puffs: impact of photochemical hazes on the observed mass–radius relationship of low-mass planets. Astrophys. J. 890, 93 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ohno, K. & Tanaka, Y. A. Grain growth in escaping atmospheres: implications for the radius inflation of super-puffs. Astrophys. J. 920, 124 (2021).

    Article 
    ADS 

    Google Scholar
     

  • He, C. et al. Carbon monoxide affecting planetary atmospheric chemistry. Astrophys. J. Lett. 841, L31 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Moran, S. E. et al. Triton haze analogs: the role of carbon monoxide in haze formation. J. Geophys. Res. Planets 127, e2021JE006984 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Rao, C. N. R. (ed.) Ultra-violet and Visible Spectroscopy; Chemical Applications (Butterworth, 1975).

  • van Krevelen D. W. & te Nijenhuis K. in Properties of Polymers 4th edn, Ch. 10 (Elsevier, 2009).

  • Lin-Vien, D., Colthup, N. B., Fateley, W. G. & Grasselli, J. G. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, 503 (Academic Press, 1991).

  • Socrates, G. Infrared and Raman Characteristic Group Frequencies, 347 (Wiley, 2001).

  • Duvernay, F. et al. Carbodiimide production from cyanamide by UV irradiation and thermal reaction on amorphous water ice. J. Phys. Chem. A 109, 603–608 (2005).

    Article 

    Google Scholar
     

  • Khare, B. N. et al. Analysis of the time-dependent chemical evolution of Titan haze tholin. Icarus 160, 172–182 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Imanaka, H. et al. Laboratory experiments of Titan tholin formed in cold plasma at various pressures: implications for nitrogen-containing polycyclic aromatic compounds in Titan haze. Icarus 168, 344–366 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Vinatier, S. et al. Optical constants of Titan’s stratospheric aerosols in the 70–1500 cm−1 spectral range constrained by Cassini/CIRS observations. Icarus 219, 5–12 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Ohno, K., Zhang, X., Tazaki, R. & Okuzumi, S. Haze formation on Triton. Astrophys. J. 912, 37 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, X., Strobel, D. F. & Imanaka, H. Haze heats Pluto’s atmosphere yet explains its cold temperature. Nature 551, 352–355 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Arney, G. N. et al. Pale orange dots: the impact of organic haze on the habitability and detectability of Earthlike exoplanets. Astrophys. J. 836, 49 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Cloutier, R. et al. A more precise mass for GJ 1214 b and the frequency of multiplanet systems around mid-M dwarfs. Astron. J. 162, 174 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lora, J. M. et al. Atmospheric circulation, chemistry, and infrared spectra of Titan-like exoplanets around different stellar types. Astrophys. J. 853, 58 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Teal, D. J. et al. Effects of UV stellar spectral uncertainty on the chemistry of terrestrial atmospheres. Astrophys. J. 927, 90 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ackerman, A. S. & Marley, M. S. Precipitating condensation clouds in substellar atmospheres. Astrophys. J. 556, 872–884 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Rooney, C. M. et al. A new sedimentation model for greater cloud diversity in giant exoplanets and brown dwarfs. Astrophys. J. 925, 33 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Batalha, N. E. et al. Exoplanet reflected-light spectroscopy with PICASO. Astrophys. J. 878, 70 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ohno, K. & Kawashima, Y. Super-Rayleigh slopes in transmission spectra of exoplanets generated by photochemical haze. Astrophys. J. Lett. 895, L47 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Rustamkulov, Z. et al. A panchromatic spectrum of the exoplanet WASP-39b with JWST NIRSpec PRISM. Nature 614, 659–663 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Sing, D. K. et al. A continuum from clear to cloud hot-Jupiter exoplanets without primordial water depletion. Nature 529, 7584 (2016).

    Article 

    Google Scholar
     

  • Corrales, L. et al. Photochemical hazes can trace the C/O ratio in exoplanet atmospheres. Astrophys. J. Lett. 943, L26 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Lupu, R. E. et al. Developing atmospheric retrieval methods for direct imaging spectroscopy of gas giants in reflected light. I. Methane abundances and basic cloud properties. Astron. J. 152, 217 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Steinrueck, M. E. et al. 3D simulations of photochemical hazes in the atmosphere of hot Jupiter HD 189733b. Mon. Not. R. Astron. Soc. 504, 2783–2799 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Moses, J. I. et al. Compositional diversity in the atmospheres of hot Neptunes, with application to GJ 436b. Astrophys. J. 777, 34 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ramirez, S. I. et al. Complex refractive index of Titan’s aerosol analogues in the 200–900 nm domain. Icarus 156, 515–529 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Tran, B. N. et al. Simulation of Titan haze formation using a photochemical flow reactor: the optical constants of the polymer. Icarus 165, 379–390 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Vuitton, V., Tran, B. N., Persans, P. D. & Ferris, J. P. Determination of the complex refractive indices of Titan haze analogs using photothermal deflection spectroscopy. Icarus 203, 663–671 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Imanaka, H., Cruikshank, D. P., Khare, B. N. & McKay, C. P. Optical constants of Titan tholins at mid-infrared wavelengths (2.5–25 μm) and the possible chemical nature of Titan’s haze particles. Icarus 218, 247–261 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Sciamma-O’Brien, E. et al. Optical constants from 370 nm to 900 nm of Titan tholins produced in a low pressure RF plasma discharge. Icarus 218, 356–363 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Mahjoub, A. et al. Influence of methane concentration on the optical indices of Titan’s aerosols analogues. Icarus 221, 670–677 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Gavilan, L., Carrasco, N., Hoffmann, S. V., Jones, N. C. & Mason, N. J. Organic aerosols in anoxic and oxic atmospheres of Earth-like exoplanets: VUV-MIR spectroscopy of CHON tholins. Astrophys. J. 861, 110 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Jovanović, L. et al. Optical constants of Pluto aerosol analogues from UV to near-IR. Icarus 362, 114398 (2021).

    Article 

    Google Scholar
     

  • He, C., Hörst, S. M., Radke, M. & Yant, M. Optical constants of a Titan haze analog from 0.4 to 3.5 μm determined using vacuum spectroscopy. Planet. Sci. J. 3, 25 (2022).

    Article 

    Google Scholar
     

  • Brassé, C., Muñoz, O., Coll, P. & Raulin, F. Optical constants of Titan aerosols and their tholins analogs: experimental results and modeling/observational data. Planet. Space Sci. 109, 159–174 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Myers, T. L., et al. Obtaining the complex optical constants n and k via quantitative absorption measurements in KBr pellets. In Proc. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XX, Vol. 11010 (eds. Guicheteau, J. A. & Howle, C. R.) (SPIE, Bellingham, 2019).

  • Wood, B. E. & Roux, J. A. Infrared optical properties of thin H2O, NH3, and CO2 cryofilms. J. Opt. Soc. Am. 72, 720–728 (1982).

    Article 
    ADS 

    Google Scholar
     

  • Toon, O. B. et al. Infrared optical constants of H2O ice, amorphous nitric acid solutions, and nitric acid hydrates. J. Geophys. Res. Atmos. 99, 25631–25654 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Padera, F. Measuring Absorptance (k) and Refractive Index (n) of Thin Films with the PerkinElmer Lambda 1050+ High Performance UV/Vis/NIR Spectrometers Application Note (PerkinElmer, 2019).

  • Sumlin, B. J., Heinson, W. R. & Chakrabarty, R. K. Retrieving the aerosol complex refractive index using PyMieScatt: a Mie computational package with visualization capabilities. J. Quant. Spectrosc. Radiat. Transf. 205, 127–134 (2018).

    Article 
    ADS 

    Google Scholar
     

  • He, C. et al. Laboratory simulations of haze formation in the atmospheres of super-Earths and mini-Neptunes: particle color and size distribution. Astrophys. J. Lett. 856, 1 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Lavvas, P., Yelle, R. V. & Vuitton, V. The detached haze layer in Titan’s mesosphere. Icarus 201, 626–633 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Kawashima, Y. & Ikoma, M. Theoretical transmission spectra of exoplanet atmospheres with hydrocarbon haze: effect of creation, growth, and settling of haze particles. I. Model description and first results. Astrophys. J. 853, 7 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Trainer, M. G. et al. The influence of benzene as a trace reactant in Titan aerosol analogs. Astrophys. J. Lett. 766, L4 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Lavvas, P. et al. Aerosol growth in Titan’s Ionosphere. Proc. Natl Acad. Sci. USA 110, 8 (2013).

    Article 

    Google Scholar
     

  • Yoon, Y. H. et al. The role of benzene photolysis in Titan haze formation. Icarus 233, 233–241 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Gao, P. & Benneke, B. Microphysics of KCl and ZnS clouds on GJ 1214 b. Astrophys. J. 863, 165 (2018).

  • Ohno, K. & Okuzumi, S. A condensation–coalescence cloud model for exoplanetary atmospheres: formulation and test applications to terrestrial and Jovian clouds. Astrophys. J. 835, 261 (2017).

    Article 
    ADS 

    Google Scholar
     

  • https://www.nature.com/articles/s41550-023-02140-4

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button