Exoplanets

On the behaviour of spin–orbit connection of exoplanets

  • Christiansen, J. L. Five thousand exoplanets at the NASA Exoplanet Archive. Nat. Astron. 6, 516–519 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Borucki, W. J. et al. Kepler Planet-Detection Mission: introduction and first results. Science 327, 977–980 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 1, 014003 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Ford, E. B. Architectures of planetary systems and implications for their formation. Proc. Natl Acad. Sci. USA 111, 12616–12621 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Winn, J. N. & Fabrycky, D. C. The occurrence and architecture of exoplanetary systems. Annu. Rev. Astron. Astrophys. 53, 409–447 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Funk, B., Wuchterl, G., Schwarz, R., Pilat-Lohinger, E. & Eggl, S. The stability of ultra-compact planetary systems. Astron. Astrophys. 516, A82 (2010).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Kane, S. R., Hinkel, N. R. & Raymond, S. N. Solar System moons as analogs for compact exoplanetary systems. Astron. J. 146, 122–128 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Donati, J.-F. et al. Magnetic cycles of the planet-hosting star τ Bootis. Mon. Not. R. Astron. Soc. 385, 1179–1185 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Udry, S. et al. The CORALIE survey for southern extra-solar planets. VIII. The very low-mass companions of HD 141937, HD 162020, HD 168443, and HD 202206: brown dwarfs or ‘superplanets’? Astron. Astrophys. 390, 267–279 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Aigrain, S. et al. Transiting exoplanets from the CoRoT space mission. IV. CoRoT-Exo-4b: a transiting planet in a 9.2-day synchronous orbit. Astron. Astrophys. 488, L43–L46 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Lanza, A. F. et al. Photospheric activity and rotation of the planet-hosting star CoRoT-4a. Astron. Astrophys. 506, 255–262 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Barnes, R. Tidal locking of habitable exoplanets. Celest. Mech. Dyn. Astron. 129, 509–536 (2017).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Drake, S. A., Pravdo, S. H., Angelini, L. & Stern, R. A. Synchronization timescales for three solar-type stars that have Jupiter-mass companions in short-period orbits. Astron. J. 115, 2122–2124 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Canto Martins, B. L. et al. A search for rotation periods in 1000 TESS objects of interest. Astrophys. J. Suppl. Ser. 250, 20–31 (2020).

  • McQuillan, A., Mazeh, T. & Aigrain, S. Stellar rotation periods of the Kepler objects of interest: a dearth of close-in planets around fast rotators. Astrophys. J. Lett. 775, 11–14 (2013).

  • Walkowicz, L. M. & Basri, G. S. Rotation periods, variability properties and ages for Kepler exoplanet candidate host stars. Mon. Not. R. Astron. Soc. 436, 1883–1895 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Mazeh, T., Perets, H. B., McQuillan, A. & Goldstein E. S. Photometric amplitude distribution of stellar rotation of KOIs—indication for spin–orbit alignment of cool stars and high obliquity for hot stars. Astron. J. 801, 3–12 (2015).

  • De Medeiros, J. R. et al. Overview of semi-sinusoidal stellar variability with the CoRoT satellite. Astron. Astrophys. 555, A63 (2013).

    Article 

    Google Scholar
     

  • Leão, I. C. et al. Rotation period distribution of CoRoT and Kepler Sun-like stars. Astron. Astrophys. 582, A85 (2015).

    Article 

    Google Scholar
     

  • Masuda, K., Petigura, E. A. & Hall, O. J. Inferring the rotation period distribution of stars from their projected rotation velocities and radii: application to late-F/early-G Kepler stars. Mon. Not. R. Astron. Soc. 510, 5623–5638 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ekström, S. et al. Grids of stellar models with rotation. I. Models from 0.8 to 120 M at solar metallicity (Z = 0.014). Astron. Astrophys. 537, A146 (2012).

    Article 

    Google Scholar
     

  • Gallet, F. & Bouvier, J. Improved angular momentum evolution model for solar-like stars. Astron. Astrophys. 556, A36 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Gallet, F. & Bouvier, F. Improved angular momentum evolution model for solar-like stars. II. Exploring the mass dependence. Astron. Astrophys. 577, A98 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Masuda, K. On the evolution of rotational modulation amplitude in solar-mass main-sequence stars. Astrophys. J. 933, 195–213 (2022).

  • Correia, A. C. M. & Laskar, J. Tidal Evolution of Exoplanets (Univ. of Arizona Press, 2010).

  • Jackson, B., Greenberg, R. & Barnes, R. Tidal evolution of close-in extrasolar planets. Astrophys. J. 678, 1396–1406 (2008).

  • Lurie, J. C. et al. Tidal synchronization and differential rotation of Kepler eclipsing binaries. Astron. J. 154, 250–265 (2017).

  • Leconte, J., Wu, H., Menou, K. & Murray, N. Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars. Science 347, 632–635 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Menou, K. Water-trapped worlds. Astrophys. J. 774, 51–58 (2013).

  • Leconte, J. et al. 3D climate modeling of close-in land planets: circulation patterns, climate moist bistability, and habitability. Astron. Astrophys. 554, A69 (2013).

    Article 

    Google Scholar
     

  • Edson, A. R. et al. The carbonate–silicate cycle and CO2/climate feedbacks on tidally locked terrestrial planets. Astrobiology 12, 562–571 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Menou, K. Climate stability of habitable Earth-like planets. Earth Planet. Sci. Lett. 429, 20–24 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Joshi, M. M., Haberle, R. M. & Reynolds, R. T. Simulations of the atmospheres of synchronously rotating terrestrial planets orbiting M dwarfs: conditions for atmospheric collapse and the implications for habitability. Icarus 129, 450–465 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Auclair-Desrotour, P. & Heng, K. Atmospheric stability and collapse on tidally locked rocky planets. Astron. Astrophys. 638, A77 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Auclair-Desrotour, P. et al. The rotation of planets hosting atmospheric tides: from Venus to habitable super-Earths. Astron. Astrophys. 603, 108A (2017).

    Article 

    Google Scholar
     

  • Correia, A. C. M. & Laskar, J. The four final rotation states of Venus. Nature 411, 767–770 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Ahuir, J., Mathis, S. & Amard, L. Dynamical tide in stellar radiative zones. General formalism and evolution for low-mass stars. Astron. Astrophys. 651, 3–29 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Teitler, S. & Königl, A. Why is there a dearth of close-in planets around fast-rotating stars? Astrophys. J. 786, 139–146 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Benbakoura, M., Réville, V., Brun, A. S., Le Poncin-Lafitte, C. & Mathis, S. Evolution of star–planet systems under magnetic braking and tidal interaction. Astron. Astrophys. 621, 124–144 (2019).

    Article 

    Google Scholar
     

  • Pettengill, G. H. & Dyce, R. B. A radar determination of the rotation of the planet Mercury. Nature 206, 1240 (1965).

    Article 
    ADS 

    Google Scholar
     

  • Showalter, M. R. & Hamilton, D. P. Resonant interactions and chaotic rotation of Pluto’s small moons. Nature 522, 45–49 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Smith, B. A. et al. A new look at the Saturn system: the Voyager 2 images. Science 215, 504–537 (1982).

    Article 
    ADS 

    Google Scholar
     

  • Bryan, M. L. et al. As the worlds turn: constraining spin evolution in the planetary-mass regime. Astrophys. J. 905, 37–47 (2020).

  • Bryan, M. L. et al. Constraints on the spin evolution of young planetary-mass companions. Nat. Astron. 2, 138–144 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Snellen, I. A. G. et al. Fast spin of the young extrasolar planet β Pictoris b. Nature 509, 63–65 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Kane, S. R. Atmospheric dynamics of a near tidally locked Earth-sized planet. Nat. Astron. 6, 420–427 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Akeson, R. L. et al. The NASA Exoplanet Archive: data and tools for exoplanet research. Publ. Astron. Soc. Pac. 125, 989–999 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Gordon, T. A. et al. Stellar rotation in the K2 sample: evidence for modified spin-down. Astrophys. J. 913, 70–83 (2021).

  • Messias, Y. S. et al. A dearth of close-in planets around rapidly rotating stars or a dearth of data? Astrophys. J. Lett. 930, L23 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Gaia Collaboration, Brown, A. G. A. et al. Gaia data release 1. Summary of the astrometric, photometric, and survey properties. Astron. Astrophys. 595, A2 (2016).

  • Gaia Collaboration, Brown, A. G. A. et al. Gaia data release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

  • Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. 192, 3–37 (2011).

  • Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. 208, 4–45 (2013).

  • Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): binaries, pulsations, and explosions. Astrophys. J. Suppl. 220, 15–58 (2015).

  • Choi, J. et al. MESA Isochrones and Stellar Tracks (MIST). I. Solar-scaled models. Astrophys. J. 823, 102–149 (2016).

  • Dotter, A. MESA Isochrones and Stellar Tracks (MIST) 0: methods for the construction of stellar isochrones. Astrophys. J. Suppl. 222, 8–18 (2016).

  • Davenport, J. R. A. & Covey, K. R. Rotating stars from Kepler observed with Gaia DR2. Astrophys. J. 868, 151–158 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Hartman, J. D. et al. Deep MMT transit survey of the open cluster M37. III. Stellar rotation at 550 Myr. Astrophys. J. 691, 342–364 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Van Saders, J. L. Weakened magnetic braking as the origin of anomalously rapid rotation in old field stars. Nature 529, 181–184 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Masuda, K. & Hirano, T. Tidal effects on the radial velocities of V723 Mon: additional evidence for a dark 3M companion. Astrophys. J. Lett. 910, L17 (2021).

    Article 
    ADS 

    Google Scholar
     

  • https://www.nature.com/articles/s41550-023-01976-0

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button