Exoplanets

A rich hydrocarbon chemistry and high C to O ratio in the inner disk around a very low-mass star

  • Dressing, C. D. & Charbonneau, D. The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler dataset and an empirical measurement of the detection sensitivity. Astrophys. J. 807, 45 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Sabotta, S. et al. The CARMENES search for exoplanets around M dwarfs. Planet occurrence rates from a subsample of 71 stars. Astron. Astrophys. 653, A114 (2021).

    Article 

    Google Scholar
     

  • Gaia Collaboration et al. Gaia Data Release 3: summary of the content and survey properties. Preprint at arXiv https://doi.org/10.48550/arXiv.2208.00211 (2022).

  • Miret-Roig, N. et al. The star formation history of Upper Scorpius and Ophiuchus. A 7D picture: positions, kinematics, and dynamical traceback ages. Astron. Astrophys. 667, A163 (2022).

    Article 

    Google Scholar
     

  • Carpenter, J. M., Ricci, L. & Isella, A. An ALMA continuum survey of circumstellar disks in the upper Scorpius OB association. Astrophys. J. 787, 42 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Luhman, K. L., Herrmann, K. A., Mamajek, E. E., Esplin, T. L. & Pecaut, M. J. New young stars and brown dwarfs in the upper Scorpius association. Astron. J. 156, 76 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Pascucci, I., Herczeg, G., Carr, J. S. & Bruderer, S. The atomic and molecular content of disks around very low-mass stars and brown dwarfs. Astrophys. J. 779, 178 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Barenfeld, S. A., Carpenter, J. M., Ricci, L. & Isella, A. ALMA observations of circumstellar disks in the upper Scorpius OB association. Astrophys. J. 827, 142 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Wright, G. S. et al. The Mid-Infrared Instrument for the James Webb Space Telescope, II: design and build. Publ. Astron. Soc. Pac. 127, 595 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Kessler-Silacci, J. et al. c2d Spitzer IRS spectra of disks around T tauri stars. I. Silicate emission and grain growth. Astrophys. J. 639, 275–291 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Furlan, E. et al. A survey and analysis of spitzer infrared spectrograph spectra of T tauri stars in taurus. Astrophys. J. Suppl. Ser. 165, 568–605 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Dahm, S. E. & Carpenter, J. M. Spitzer spectroscopy of circumstellar disks in the 5 Myr old upper Scorpius OB association. Astron. J. 137, 4024–4045 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Pascucci, I. et al. The different evolution of gas and dust in disks around sun-like and cool stars. Astrophys. J. 696, 143–159 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Carr, J. S. & Najita, J. R. Organic molecules and water in the inner disks of T tauri stars. Astrophys. J. 733, 102 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Salyk, C., Pontoppidan, K. M., Blake, G. A., Najita, J. R. & Carr, J. S. A Spitzer survey of mid-infrared molecular emission from protoplanetary disks. II. Correlations and local thermal equilibrium models. Astrophys. J. 731, 130 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Woods, P. M. & Willacy, K. Carbon isotope fractionation in protoplanetary disks. Astrophys. J. 693, 1360–1378 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Gibb, E. L. & Horne, D. Detection of CH4 in the GV Tau N protoplanetary disk. Astrophys. J. Lett. 776, L28 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Carr, J. S. & Najita, J. R. Organic molecules and water in the planet formation region of young circumstellar disks. Science 319, 1504 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Cernicharo, J. et al. Infrared Space Observatory’s discovery of C4H2, C6H2, and benzene in CRL 618. Astrophys. J. Lett. 546, L123–L126 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Coustenis, A. et al. The composition of Titan’s stratosphere from Cassini/CIRS mid-infrared spectra. Icarus 189, 35–62 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Schuhmann, M. et al. Aliphatic and aromatic hydrocarbons in comet 67P/Churyumov-Gerasimenko seen by ROSINA. Astron. Astrophys. 630, A31 (2019).

    Article 

    Google Scholar
     

  • Woitke, P. et al. Modelling mid-infrared molecular emission lines from T Tauri stars. Astron. Astrophys. 618, A57 (2018).

    Article 

    Google Scholar
     

  • Kress, M. E., Tielens, A. G. G. M. & Frenklach, M. The ‘soot line’: destruction of presolar polycyclic aromatic hydrocarbons in the terrestrial planet-forming region of disks. Adv. Space Res. 46, 44–49 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Anderson, D. E. et al. Destruction of refractory carbon in protoplanetary disks. Astrophys. J. 845, 13 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Li, J., Bergin, E. A., Blake, G. A., Ciesla, F. J. & Hirschmann, M. M. Earth’s carbon deficit caused by early loss through irreversible sublimation. Sci. Adv. 7, eabd3632 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Gail, H.-P. & Trieloff, M. Spatial distribution of carbon dust in the early solar nebula and the carbon content of planetesimals. Astron. Astrophys. 606, A16 (2017).

    Article 

    Google Scholar
     

  • Walsh, C., Nomura, H. & van Dishoeck, E. The molecular composition of the planet-forming regions of protoplanetary disks across the luminosity regime. Astron. Astrophys. 582, A88 (2015).

    Article 

    Google Scholar
     

  • Woods, P. M. & Willacy, K. Benzene formation in the inner regions of protostellar disks. Astrophys. J. Lett. 655, L49–L52 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Frenklach, M. & Feigelson, E. D. Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes. Astrophys. J. 341, 372 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Morgan, J. W. A., Feigelson, E. D., Wang, H. & Frenklach, M. A new mechanism for the formation of meteoritic kerogen-like material. Meteoritics 26, 374 (1991).

    ADS 

    Google Scholar
     

  • Geers, V. C. et al. C2D Spitzer-IRS spectra of disks around T Tauri stars. II. PAH emission features. Astron. Astrophys. 459, 545–556 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Najita, J. R., Ádámkovics, M. & Glassgold, A. E. Formation of organic molecules and water in warm disk atmospheres. Astrophys. J. 743, 147 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Najita, J. R. et al. The HCN-water ratio in the planet formation region of disks. Astrophys. J. 766, 134 (2013).

    Article 
    ADS 

    Google Scholar
     

  • van Dishoeck, E. F. et al. Water in star-forming regions: physics and chemistry from clouds to disks as probed by Herschel spectroscopy. Astron. Astrophys. 648, A24 (2021).

    Article 

    Google Scholar
     

  • Anderson, D. E. et al. Observing carbon and oxygen carriers in protoplanetary disks at mid-infrared wavelengths. Astrophys. J. 909, 55 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Mulders, G. D., Ciesla, F. J., Min, M. & Pascucci, I. The snow line in viscous disks around low-mass stars: implications for water delivery to terrestrial planets in the habitable zone. Astrophys. J. 807, 9 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Bosman, A. D. et al. Molecules with ALMA at planet-forming scales (MAPS). VII. Substellar O/H and C/H and superstellar C/O in planet-feeding gas. Astrophys. J. Suppl. Ser. 257, 7 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Pinilla, P. et al. Explaining millimeter-sized particles in brown dwarf disks. Astron. Astrophys. 554, A95 (2013).

    Article 

    Google Scholar
     

  • Kurtovic, N. T. et al. Size and structures of disks around very low mass stars in the taurus star-forming region. Astron. Astrophys. 645, A139 (2021).

    Article 

    Google Scholar
     

  • Morbidelli, A., Lunine, J. I., O’Brien, D. P., Raymond, S. N. & Walsh, K. J. Building terrestrial planets. Ann. Rev. Earth Planetary Sci. 40, 251–275 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Ormel, C. W., Liu, B. & Schoonenberg, D. Formation of TRAPPIST-1 and other compact systems. Astron. Astrophys. 604, A1 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Lee, J.-E., Bergin, E. A. & Nomura, H. The solar nebula on fire: a solution to the carbon deficit in the inner Solar System. Astrophys. J. Lett. 710, L21–L25 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Greene, T. P. et al. Thermal emission from the Earth-sized exoplanet TRAPPIST-1 b using JWST. Nature https://doi.org/10.1038/s41586-023-05951-7 (2023).

  • Rieke, G. H. et al. The Mid-Infrared Instrument for the James Webb Space Telescope, I: introduction. Publ. Astron. Soc. Pac. 127, 584 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Labiano, A. et al. Wavelength calibration and resolving power of the JWST MIRI Medium Resolution Spectrometer. Astron. Astrophys. 656, A57 (2021).

    Article 

    Google Scholar
     

  • Wells, M. et al. The Mid-Infrared Instrument for the James Webb Space Telescope, VI: the Medium Resolution Spectrometer. Publ. Astron. Soc. Pac. 127, 646 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Bushouse, H. et al. JWST Calibration Pipeline. Zenodo. https://doi.org/10.5281/zenodo.7325378 (2022).

  • Salyk, C. slabspec: Python code for producing LTE slab model molecular spectra. Zenodo. https://doi.org/10.5281/zenodo.4037306 (2020).

  • Gordon, I. et al. The HITRAN2020 molecular spectroscopic database. J. Quantit. Spectrosc. Radiative Trans. 277, 107949 (2022).

    Article 

    Google Scholar
     

  • Delahaye, T. et al. The 2020 edition of the GEISA spectroscopic database. J. Mol. Spectrosc. 380, 111510 (2021).

    Article 

    Google Scholar
     

  • Meijerink, R., Pontoppidan, K. M., Blake, G. A., Poelman, D. R. & Dullemond, C. P. Radiative transfer models of mid-infrared H2O lines in the planet-forming region of circumstellar disks. Astrophys. J. 704, 1471–1481 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Bruderer, S., Harsono, D. & van Dishoeck, E. F. Ro-vibrational excitation of an organic molecule (HCN) in protoplanetary disks. Astron. Astrophys. 575, A94 (2015).

    Article 

    Google Scholar
     

  • Avni, Y. Energy spectra of X-ray clusters of galaxies. Astrophys. J. 210, 642–646 (1976).

    Article 
    ADS 

    Google Scholar
     

  • Šimečková, M., Jacquemart, D., Rothman, L. S., Gamache, R. R. & Goldman, A. Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database. J. Quant. Spectrosc. Radiat. Transf. 98, 130–155 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Dang-Nhu, M. & Plíva, J. Intensities in the ν4, ν12, ν13, and ν14 bands of benzene. J. Mol. Spectrosc. 138, 423–429 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Sung, K., Toon, G. C. & Crawford, T. J. N2– and (H2+He)-broadened cross sections of benzene (C6H6) in the 7-15 μm region for the Titan and Jovian atmospheres. Icarus 271, 438–452 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Bruderer, S. Survival of molecular gas in cavities of transition disks. I. CO. Astron. Astrophys. 559, A46 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Lebouteiller, V. et al. CASSIS: the Cornell Atlas of Spitzer/infrared spectrograph sources. Astrophys. J. Suppl. Ser. 196, 8 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Banzatti, A. et al. The kinematics and excitation of infrared water vapor emission from planet-forming disks: results from spectrally resolved surveys and guidelines for JWST spectra. Astron. J. 165, 72 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Banzatti, A. et al. Hints for icy pebble migration feeding an oxygen-rich chemistry in the inner planet-forming region of disks. Astrophys. J. 903, 124 (2020).

    Article 
    ADS 

    Google Scholar
     

  • https://www.nature.com/articles/s41550-023-01965-3

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button