Exoplanets

Spatially resolved imaging of the inner Fomalhaut disk using JWST/MIRI

  • Aumann, H. H. et al. Discovery of a shell around Alpha Lyrae. Astrophys. J. Lett. 278, L23–L27 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Gillett, F. C. IRAS observations of cool excess around main sequence stars. In Light on Dark Matter (ed. Israel, F. P.) 61–69 (Astrophysics and Space Science Library Vol. 124, Springer, 1986).

  • van Leeuwen, F. Validation of the new Hipparcos reduction. Astron. Astrophys. 474, 653–664 (2007).

    Article 
    ADS 

    Google Scholar
     

  • MacGregor, M. A. et al. A complete ALMA map of the Fomalhaut debris disk. Astrophys. J. 842, 8 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Rhee, J. H., Song, I., Zuckerman, B. & McElwain, M. Characterization of dusty debris disks: the IRAS and Hipparcos catalogs. Astrophys. J. 660, 1556–1571 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Kalas, P., Graham, J. R. & Clampin, M. A planetary system as the origin of structure in Fomalhaut’s dust belt. Nature 435, 1067–1070 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Galicher, R., Marois, C., Zuckerman, B. & Macintosh, B. Fomalhaut b: independent analysis of the Hubble Space Telescope public archive data. Astrophys. J. 769, 42 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Gáspár, A. & Rieke, G. New HST data and modeling reveal a massive planetesimal collision around Fomalhaut. Proc. Natl Acad. Sci. USA 117, 9712–9722 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Stapelfeldt, K. R. et al. First look at the Fomalhaut debris disk with the Spitzer Space Telescope. Astrophys. J. Suppl. Ser. 154, 458–462 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Acke, B. et al. Herschel images of Fomalhaut. An extrasolar Kuiper belt at the height of its dynamical activity. Astron. Astrophys. 540, A125 (2012).

    Article 

    Google Scholar
     

  • Holland, W. S. et al. Submillimetre images of dusty debris around nearby stars. Nature 392, 788–791 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Holland, W. S. et al. Submillimeter observations of an asymmetric dust disk around Fomalhaut. Astrophys. J. 582, 1141–1146 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Boley, A. C. et al. Constraining the planetary system of Fomalhaut using high-resolution ALMA observations. Astrophys. J. Lett. 750, L21 (2012).

    Article 
    ADS 

    Google Scholar
     

  • White, S. M. et al. Observing the Sun with the Atacama Large Millimeter/Submillimeter Array (ALMA): fast-scan single-dish mapping. Sol. Phys. 292, 88 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Espinoza, P., Su, K., Rieke, G. & Stapelfeldt, K. Discovery of an extended halo in the Fomalhaut debris system. Am. Astron. Soc. Meet. Abstr. 217, 339.01 (2011).

  • Lebreton, J. et al. An interferometric study of the Fomalhaut inner debris disk. III. Detailed models of the exozodiacal disk and its origin. Astron. Astrophys. 555, A146 (2013).

    Article 

    Google Scholar
     

  • Su, K. Y. L. et al. Asteroid belts in debris disk twins: Vega and Fomalhaut. Astrophys. J. 763, 118 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Adams, J. D., Herter, T. L., Lau, R. M., Trinh, C. & Hankins, M. Dust production rates in the Fomalhaut debris disk from SOFIA/FORCAST mid-infrared imaging. Astrophys. J. 862, 161 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Absil, O. et al. An interferometric study of the Fomalhaut inner debris disk. I. Near-infrared detection of hot dust with VLTI/VINCI. Astrophys. J. 704, 150–160 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Mennesson, B. et al. An interferometric study of the Fomalhaut inner debris disk. II. Keck Nuller mid-infrared observations. Astrophys. J. 763, 119 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Roman, N. G. Planets of other suns. Astron. J. 64, 344–345 (1959).

    Article 

    Google Scholar
     

  • Quillen, A. C. Predictions for a planet just inside Fomalhaut’s eccentric ring. Mon. Not. R. Astron. Soc. 372, L14–L18 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Chiang, E., Kite, E., Kalas, P., Graham, J. R. & Clampin, M. Fomalhaut’s debris disk and planet: constraining the mass of Fomalhaut b from disk morphology. Astrophys. J. 693, 734–749 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Kalas, P. et al. Optical images of an exosolar planet 25 light-years from Earth. Science 322, 1345–1348 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Lawler, S. M., Greenstreet, S. & Gladman, B. Fomalhaut b as a dust cloud: frequent collisions within the Fomalhaut disk. Astrophys. J. Lett. 802, L20 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Morales, F. Y. et al. Common warm dust temperatures around main-sequence stars. Astrophys. J. Lett. 730, L29 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Su, K. Y. L. & Rieke, G. H. Signposts of multiple planets in debris disks. Proc. Int. Astron. Union 8, 318–321 (2013).

  • Ballering, N. P., Rieke, G. H. & Gáspár, A. Probing the terrestrial regions of planetary systems: warm debris disks with emission features. Astrophys. J. 793, 57 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Kennedy, G. M. & Wyatt, M. C. Do two-temperature debris discs have multiple belts? Mon. Not. R. Astron. Soc. 444, 3164–3182 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ballering, N. P., Rieke, G. H., Su, K. Y. L. & Gáspár, A. What sets the radial locations of warm debris disks? Astrophys. J. 845, 120 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Geiler, F. & Krivov, A. V. Does warm debris dust stem from asteroid belts? Mon. Not. R. Astron. Soc. 468, 959–970 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Boccaletti, A. et al. JWST/MIRI coronagraphic performances as measured on-sky. Astron. Astrophys. 667, A165 (2022).

    Article 

    Google Scholar
     

  • Esposito, T. M. et al. Debris disk results from the Gemini Planet Imager Exoplanet Survey’s polarimetric imaging campaign. Astron. J. 160, 24 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wolff, S. G., Gáspár, A., H. Rieke, G., Ballering, N. & Ygouf, M. Hiding dust around ϵ Eridani. Astron. J. 165, 115 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Su, K. Y. L. et al. The inner debris structure in the Fomalhaut planetary system. Astrophys. J. 818, 45 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Gauchet, L. et al. Sparse aperture masking at the VLT. II. Detection limits for the eight debris disks stars β Pic, AU Mic, 49 Cet, η Tel, Fomalhaut, g Lup, HD 181327 and HR 8799. Astron. Astrophys. 595, A31 (2016).

    Article 

    Google Scholar
     

  • Maire, A. L. et al. Search for cool giant exoplanets around young and nearby stars. VLT/NaCo near-infrared phase-coronagraphic and differential imaging. Astron. Astrophys. 566, A126 (2014).

    Article 

    Google Scholar
     

  • Kenworthy, M. A. et al. Coronagraphic observations of Fomalhaut at Solar System scales. Astrophys. J. 764, 7 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Gáspár, A., Psaltis, D., Özel, F., Rieke, G. H. & Cooney, A. Modeling collisional cascades in debris disks: the numerical method. Astrophys. J. 749, 14 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Marois, C. et al. Direct imaging of multiple planets orbiting the star HR 8799. Science 322, 1348–1352 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Janson, M. et al. Infrared non-detection of Fomalhaut b: implications for the planet interpretation. Astrophys. J. 747, 116 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Kennedy, G. M. & Wyatt, M. C. Collisional evolution of irregular satellite swarms: detectable dust around Solar System and extrasolar planets. Mon. Not. R. Astron. Soc. 412, 2137–2153 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Kenyon, S. J. & Bromley, B. C. Collisional cascade calculations for irregular satellite swarms in Fomalhaut b. Astrophys. J. 811, 60 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Kenyon, S. J., Currie, T. & Bromley, B. C. Fomalhaut b as a cloud of dust: testing aspects of planet formation theory. Astrophys. J. 786, 70 (2014).

    Article 
    ADS 

    Google Scholar
     

  • MacGregor, M. A. et al. Millimeter emission structure in the first ALMA image of the AU Mic debris disk. Astrophys. J. Lett. 762, L21 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ricci, L. et al. ALMA observations of the debris disk around the young solar analog HD 107146. Astrophys. J. 798, 124 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Faramaz, V. et al. A detailed characterization of HR 8799’s debris disk with ALMA in band 7. Astron. J. 161, 271 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Draine, B. T. & Lee, H. M. Optical properties of interstellar graphite and silicate grains. Astrophys. J. 285, 89–108 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Wright et al. (in the press).

  • Rieke, M. J. et al. Performance of NIRCam on JWST in flight. Publ. Astron. Soc. Pac. 135, 028001 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ressler, M. E. et al. Performance of the JWST/MIRI Si:As detectors. Proc. SPIE 7021, 70210O (2008).

  • Bouchet, P. et al. The Mid-Infrared Instrument for the James Webb Space Telescope, III: MIRIM, the MIRI imager. Publ. Astron. Soc. Pac. 127, 612 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Perrin, M. D. et al. Updated point spread function simulations for JWST with WebbPSF. Proc. SPIE 9143, 91433X (2014).

  • https://www.nature.com/articles/s41550-023-01962-6

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button