Blackholes

Black holes up close | Nature

  • Schwarzschild, K. On the gravitational field of a mass point according to Einstein’s theory. Abh. Konigl. Preuss. Akad. Wiss. Berlin 1916, 189–196 (1916).

    MathSciNet 

    Google Scholar
     

  • Kerr, R. P. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963). An exact analytical solution of general relativity describing the most general spinning uncharged black hole.

    Article 
    MathSciNet 

    Google Scholar
     

  • Misner, C. W., Thorne, K. S. & Wheeler, J. A. Gravitation (Princeton Univ. Press, 2018).

  • Michell, J. On the means of discovering the distance, magnitude, &c. of the fixed stars, in consequence of the diminution of the velocity of their light, in case such a diminution should be found to take place in any of them, and such other data should be procured from observations, as would be farther necessary for that purpose. By the Rev. John Michell, B. D. F. R. S. in a letter to Henry Cavendish, Esq. F. R. S. and A. S. Phil. Trans. R. Soc. Lond. 74, 35–57 (1784).


    Google Scholar
     

  • Laplace, P. S. Beweis des Satzes, dass die anziehende Kraft bey einem Weltkörper so groß seyn könne, dass das Licht davon nicht ausströmen kann. Allg. Geogr. Ephemer. 4, 1–6 (1799).

  • Thorne, K. S. Black Holes and Time Warps: Einstein’s Outrageous Legacy (W. W. Norton, 1994).

  • Begelman, M. & Rees, M. Gravity’s Fatal Attraction (Cambridge Univ. Press, 2020).

  • Penrose, R. Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965). Mathematical proof that black-hole formation is inevitable in general relativity from certain generic initial conditions.

    Article 
    MathSciNet 

    Google Scholar
     

  • Hawking, S. W. Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975).

    Article 
    MathSciNet 

    Google Scholar
     

  • Schmidt, M. 3C 273 : a star-like object with large red-shift. Nature 197, 1040 (1963). Discovery that the quasar 3C 273, later identified as an accreting supermassive black hole, is at a redshift of 0.158 and therefore very distant from our Galaxy and highly luminous.

    Article 

    Google Scholar
     

  • Salpeter, E. E. Accretion of interstellar matter by massive objects. Astrophys. J. 140, 796–800 (1964).

    Article 

    Google Scholar
     

  • Luminet, J.-P. Image of a spherical black hole with thin accretion disk. Astron. Astrophys. 75, 228–235 (1979).


    Google Scholar
     

  • Falcke, H., Melia, F. & Agol, E. Viewing the shadow of the black hole at the Galactic Center. Astrophys. J. Lett. 528, 13–16 (2000).

    Article 

    Google Scholar
     

  • Event Horizon Telescope Collaboration First M87 Event Horizon Telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett. 875, 1 (2019). Landmark experiment with the Event Horizon Telescope that obtained the image of the supermassive black hole M87* and confirmed the predicted black-hole shadow.

    Article 

    Google Scholar
     

  • Event Horizon Telescope Collaboration First Sagittarius A* Event Horizon Telescope results. I. The shadow of the supermassive black hole in the center of the Milky Way. Astrophys. J. Lett. 930, 12 (2022).

    Article 

    Google Scholar
     

  • Eckart, A. & Genzel, R. Observations of stellar proper motions near the Galactic Centre. Nature 383, 415–417 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Ghez, A. M., Klein, B. L., Morris, M. & Becklin, E. E. High proper-motion stars in the vicinity of Sagittarius A*: evidence for a supermassive black hole at the center of our Galaxy. Astrophys. J. 509, 678–686 (1998).

    Article 

    Google Scholar
     

  • Ghez, A. M., Morris, M., Becklin, E. E., Tanner, A. & Kremenek, T. The accelerations of stars orbiting the Milky Way’s central black hole. Nature 407, 349–351 (2000). Measurement of the accelerations of stars orbiting the object Sagittarius A* at the centre of the Galaxy.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schödel, R. et al. A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way. Nature 419, 694–696 (2002). Landmark study that reported a nearly complete orbit of a star at the centre of our Galaxy and proved beyond reasonable doubt that Sagittarius A* is a four-million-solar-mass black hole.

    Article 
    PubMed 

    Google Scholar
     

  • Ghez, A. M. et al. Stellar orbits around the Galactic Center black hole. Astrophys. J. 620, 744–757 (2005).

    Article 

    Google Scholar
     

  • Gebhardt, K. et al. The Black Hole mass in M87 from Gemini/NIFS adaptive optics observations. Astrophys. J. 729, 119 (2011).

  • Hees, A. et al. Testing general relativity with stellar orbits around the supermassive black hole in our Galactic Center. Phys. Rev. Lett. 118, 211101 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • GRAVITY Collaboration Detection of the gravitational redshift in the orbit of the star S2 near the Galactic Centre massive black hole. Astron. Astrophys. 615, 15 (2018).

    Article 

    Google Scholar
     

  • Do, T. et al. Relativistic redshift of the star S0-2 orbiting the Galactic Center supermassive black hole. Science 365, 664–668 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • GRAVITY Collaboration Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic Centre massive black hole. Astron. Astrophys. 636, 5 (2020).

    Article 

    Google Scholar
     

  • Di Matteo, T., Springel, V. & Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, 604–607 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Brüggen, M. & Kaiser, C. R. Hot bubbles from active galactic nuclei as a heat source in cooling-flow clusters. Nature 418, 301–303 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Cattaneo, A. et al. The role of black holes in galaxy formation and evolution. Nature 460, 213–219 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Balbus, S. A. & Hawley, J. F. A powerful local shear instability in weakly magnetized disks. I. Linear analysis. Astrophys. J. 376, 214–222 (1991).

    Article 

    Google Scholar
     

  • Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).


    Google Scholar
     

  • Novikov, I. D. & Thorne, K. S. in Black Holes (Les Astres Occlus) (eds DeWitt, C. & DeWitt, B.) 343–450 (Gordon & Breach, 1973).

  • Esin, A. A., McClintock, J. E. & Narayan, R. Advection-dominated accretion and the spectral states of black hole X-ray binaries: application to Nova Muscae 1991. Astrophys. J. 489, 865–889 (1997).

    Article 

    Google Scholar
     

  • Fabian, A. C. & Canizares, C. R. Do massive black holes reside in elliptical galaxies? Nature 333, 829–831 (1988).

    Article 

    Google Scholar
     

  • Ho, L. C. Nuclear activity in nearby galaxies. Ann. Rev. Astron. Astrophys. 46, 475–539 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Goldwurm, A. et al. Possible evidence against a massive black hole at the Galactic Centre. Nature 371, 589–591 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Grindlay, J. E. Black holes take centre stage? Nature 371, 561–562 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Krichbaum, T. P. et al. VLBI observations of the Galactic Center source SGR A* at 86 GHz and 215 GHz. Astron. Astrophys. 335, 106–110 (1998).


    Google Scholar
     

  • Shen, Z.-Q., Lo, K. Y., Liang, M. C., Ho, P. T. P. & Zhao, J.-H. A size of ~1 au for the radio source Sgr A* at the centre of the Milky Way. Nature 438, 62–64 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, F. & Narayan, R. Hot accretion flows around black holes. Ann. Rev. Astron. Astrophys. 52, 529–588 (2014).

    Article 

    Google Scholar
     

  • Shapiro, S. L., Lightman, A. P. & Eardley, D. M. A two-temperature accretion disk model for Cygnus X-1: structure and spectrum. Astrophys. J. 204, 187–199 (1976).

    Article 

    Google Scholar
     

  • Pringle, J. E. Thermal instabilities in accretion discs. Mon. Not. R. Astron. Soc. 177, 65–71 (1976).

    Article 

    Google Scholar
     

  • Piran, T. The role of viscosity and cooling mechanisms in the stability of accretion disks. Astrophys. J. 221, 652–660 (1978).

    Article 

    Google Scholar
     

  • Ichimaru, S. Bimodal behavior of accretion disks: theory and application to Cygnus X-1 transitions. Astrophys. J. 214, 840–855 (1977).

    Article 

    Google Scholar
     

  • Rees, M. J., Begelman, M. C., Blandford, R. D. & Phinney, E. S. Ion-supported tori and the origin of radio jets. Nature 295, 17–21 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Narayan, R. & Yi, I. Advection-dominated accretion: a self-similar solution. Astrophys. J. Lett. 428, 13–16 (1994).

    Article 

    Google Scholar
     

  • Narayan, R. & Yi, I. Advection-dominated accretion: underfed black holes and neutron stars. Astrophys. J. 452, 710–735 (1995).

    Article 

    Google Scholar
     

  • Abramowicz, M. A., Chen, X., Kato, S., Lasota, J.-P. & Regev, O. Thermal equilibria of accretion disks. Astrophys. J. Lett. 438, 37–39 (1995).

    Article 

    Google Scholar
     

  • Narayan, R., Mahadevan, R. & Quataert, E. in Theory of Black Hole Accretion Disks (eds Abramowicz, M. A. et al.) 148–182 (Cambridge Univ. Press, 1998).

  • Narayan, R., Yi, I. & Mahadevan, R. Explaining the spectrum of Sagittarius A* with a model of an accreting black hole. Nature 374, 623–625 (1995). Application of the hot-accretion-flow model to an astrophysical black hole, Sagittarius A* at our Galactic Centre.

    Article 
    CAS 

    Google Scholar
     

  • Reynolds, C. S., Di Matteo, T., Fabian, A. C., Hwang, U. & Canizares, C. R. The ‘quiescent’ black hole in M87. Mon. Not. R. Astron. Soc. 283, 111–116 (1996).

    Article 

    Google Scholar
     

  • Thompson, A. R., Moran, J. M. & Swenson, G. W. Interferometry and Synthesis in Radio Astronomy 3rd edn (Springer, 2017).

  • Eisenhauer, F. et al. GRAVITY: getting to the event horizon of Sgr A*. In Optical and Infrared Interferometry Society of Photo-Optical Instrumentation Engineers Conference Series Vol. 7013 (eds Schöller, M. et al.) 70132 (SPIE, 2008).

  • Walker, R. C., Hardee, P. E., Davies, F. B., Ly, C. & Junor, W. The structure and dynamics of the subparsec jet in M87 based on 50 VLBA observations over 17 Years at 43 GHz. Astrophys. J. 855, 128 (2018).

  • Baganoff, F. K. et al. Rapid X-ray flaring from the direction of the supermassive black hole at the Galactic Centre. Nature 413, 45–48 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Genzel, R. et al. Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre. Nature 425, 934–937 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghez, A. M. et al. Variable infrared emission from the supermassive black hole at the center of the Milky Way. Astrophys. J. Lett. 601, 159–162 (2004).

    Article 

    Google Scholar
     

  • GRAVITY Collaboration Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA*. Astron. Astrophys. 618, 10 (2018). Detection of looped clockwise motion of infrared-emitting gas around the Galactic Centre black hole Sagittarius A*.

    Article 

    Google Scholar
     

  • Gammie, C. F., McKinney, J. C. & Tóth, G. HARM: a numerical scheme for general relativistic magnetohydrodynamics. Astrophys. J. 589, 444–457 (2003).

    Article 

    Google Scholar
     

  • De Villiers, J.-P. & Hawley, J. F. A numerical method for general relativistic magnetohydrodynamics. Astrophys. J. 589, 458–480 (2003).

    Article 

    Google Scholar
     

  • Mościbrodzka, M., Gammie, C. F., Dolence, J. C., Shiokawa, H. & Leung, P. K. Radiative models of SGR A* from GRMHD simulations. Astrophys. J. 706, 497–507 (2009).

    Article 

    Google Scholar
     

  • Dexter, J., Agol, E., Fragile, P. C. & McKinney, J. C. The submillimeter bump in Sgr A* from relativistic MHD simulations. Astrophys. J. 717, 1092–1104 (2010).

    Article 

    Google Scholar
     

  • Event Horizon Telescope Collaboration First Sagittarius A* Event Horizon Telescope results. V. Testing astrophysical models of the Galactic Center black hole. Astrophys. J. Lett. 930, 16 (2022).

    Article 

    Google Scholar
     

  • Event Horizon Telescope Collaboration First M87 Event Horizon Telescope results. VIII. Magnetic field structure near the event horizon. Astrophys. J. Lett. 910, 13 (2021).

    Article 

    Google Scholar
     

  • Agol, E. Sagittarius A* polarization: no advection-dominated accretion flow, low accretion rate, and nonthermal synchrotron emission. Astrophys. J. Lett. 538, 121–124 (2000).

    Article 

    Google Scholar
     

  • Quataert, E. & Gruzinov, A. Constraining the accretion rate onto Sagittarius A* using linear polarization. Astrophys. J. 545, 842–846 (2000).

    Article 

    Google Scholar
     

  • Event Horizon Telescope Collaboration First Sagittarius A* Event Horizon Telescope results. VI. Testing the black hole metric. Astrophys. J. Lett. 930, 17 (2022).

    Article 

    Google Scholar
     

  • Newman, E. T. et al. Metric of a rotating, charged mass. J. Math. Phys. 6, 918–919 (1965).

    Article 
    MathSciNet 

    Google Scholar
     

  • Blandford, R. D. & Znajek, R. L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977). Demonstration that magnetic fields threading the black-hole horizon can extract rotational energy of the black hole, powering relativistic jets.

    Article 

    Google Scholar
     

  • Darwin, C. The gravity field of a particle. Proc. R. Soc. Lond. Ser. A 249, 180–194 (1959).

  • Bardeen, J. M. in Black Holes (Les Astres Occlus) (eds DeWitt, C. & DeWitt, B.) 241–289 (Gordon & Breach, 1973).

  • Johnson, M. D. & Lupsasca, A. et al. Universal interferometric signatures of a black hole’s photon ring. Sci. Adv. 6, 1310 (2020). Description of the formation of a set of nested self-similar subrings by black-hole lensing, and discussion of how the subrings could be disentangled in the image via interferometry.

    Article 

    Google Scholar
     

  • Broderick, A. E., Johannsen, T., Loeb, A. & Psaltis, D. Testing the no-hair theorem with Event Horizon Telescope observations of Sagittarius A*. Astrophys. J. 784, 7 (2014).

    Article 

    Google Scholar
     

  • Psaltis, D. et al. Gravitational test beyond the first post-Newtonian order with the shadow of the M87 black hole. Phys. Rev. Lett. 125, 141104 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chael, A., Johnson, M. D. & Lupsasca, A. Observing the inner shadow of a black hole: a direct view of the event horizon. Astrophys. J. 918, 6 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Johannsen, T. & Psaltis, D. Testing the no-hair theorem with observations in the electromagnetic spectrum. II. Black hole images. Astrophys. J. 718, 446–454 (2010).

    Article 

    Google Scholar
     

  • Gralla, S. E., Lupsasca, A. & Marrone, D. P. The shape of the black hole photon ring: a precise test of strong-field general relativity. Phys. Rev. D 102, 124004 (2020).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Penrose, R. Gravitational collapse: the role of general relativity. Nuovo Cimento Rivista Serie 1, 252 (1969).


    Google Scholar
     

  • Bardeen, J. M., Press, W. H. & Teukolsky, S. A. Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J. 178, 347–370 (1972).

    Article 

    Google Scholar
     

  • Semenov, V., Dyadechkin, S. & Punsly, B. Simulations of jets driven by black hole rotation. Science 305, 978–980 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tchekhovskoy, A., Narayan, R. & McKinney, J. C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc. 418, 79–83 (2011).

    Article 

    Google Scholar
     

  • Ricarte, A., Palumbo, D. C. M., Narayan, R., Roelofs, F. & Emami, R. Observational signatures of frame dragging in strong gravity. Astrophys. J. Lett. 941, L12 (2022).

  • Falcke, H. & Markoff, S. The jet model for Sgr A*: radio and X-ray spectrum. Astron. Astrophys. 362, 113–118 (2000).


    Google Scholar
     

  • Yusef-Zadeh, F., Roberts, D., Wardle, M., Heinke, C. O. & Bower, G. C. Flaring activity of Sagittarius A* at 43 and 22 GHz: evidence for expanding hot plasma. Astrophys. J. 650, 189–194 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Brinkerink, C. D., Falcke, H., Law, C. J., Barkats, D. & Bower, G. C. et al. ALMA and VLA measurements of frequency-dependent time lags in Sagittarius A*: evidence for a relativistic outflow. Astron. Astrophys. 576, 41 (2015).

    Article 

    Google Scholar
     

  • Psaltis, D., Wex, N. & Kramer, M. A quantitative test of the no-hair theorem with Sgr A* using stars, pulsars, and the Event Horizon Telescope. Astrophys. J. 818, 121 (2016).

    Article 

    Google Scholar
     

  • Arzoumanian, Z. et al. The NANOGrav 12.5 yr data set: search for an isotropic stochastic gravitational-wave background. Astrophys. J. Lett. 905, 34 (2020).

    Article 

    Google Scholar
     

  • Kalogera, V. et al. The next generation global gravitational wave observatory: the science book. Preprint at https://arxiv.org/abs/2111.06990 (2021).

  • Amaro-Seoane, P. et al. Laser Interferometer Space Antenna. Preprint at https://arxiv.org/abs/1702.00786 (2017).

  • Chael, A. A. et al. Interferometric imaging directly with closure phases and closure amplitudes. Astrophys. J. 857, 23 (2018).

    Article 

    Google Scholar
     

  • Event Horizon Telescope Collaboration First M87 Event Horizon Telescope results. IV. Imaging the central supermassive black hole. Astrophys. J. Lett. 875, 4 (2019).

    Article 

    Google Scholar
     

  • Event Horizon Telescope Collaboration First M87 Event Horizon Telescope results. VII. Polarization of the ring. Astrophys. J. Lett. 910, 12 (2021).

    Article 

    Google Scholar
     

  • Event Horizon Telescope Collaboration First Sagittarius A* Event Horizon Telescope results. III. Imaging of the Galactic Center supermassive black hole. Astrophys. J. Lett. 930, 14 (2022).

    Article 

    Google Scholar
     

  • Goddi, C. et al. Polarimetric properties of Event Horizon Telescope targets from ALMA. Astrophys. J. Lett. 910, 14 (2021).

    Article 

    Google Scholar
     

  • Kravchenko, E. et al. Linear polarization in the nucleus of M87 at 7 mm and 1.3 cm. Astron. Astrophys. 637, 6 (2020).

    Article 

    Google Scholar
     

  • Owen, F. N., Eilek, J. A. & Kassim, N. E. M87 at 90 centimeters: a different picture. Astrophys. J. 543, 611–619 (2000).

    Article 

    Google Scholar
     

  • Source link

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button