Blackholes

Stellar initial mass function varies with metallicity and time

  • Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Kroupa, P. The initial mass function of stars: evidence for uniformity in variable systems. Science 295, 82–91 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pacif. 115, 763–795 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Bastian, N., Covey, K. R. & Meyer, M. R. A universal stellar initial mass function? A critical look at variations. Annu. Rev. Astron. Astrophys. 48, 339–389 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Adams, F. C. A theory of the initial mass function for star formation in molecular clouds. Astrophys. J. 464, 256 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Hopkins, P. F. The stellar initial mass function, core mass function and the last-crossing distribution. Mon. Not. R. Astron. Soc. 423, 2037–2044 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Hennebelle, P. & Chabrier, G. Analytical theory for the initial mass function. III. Time dependence and star formation rate. Astrophys. J. 770, 150 (2013).

    Article 
    ADS 

    Google Scholar
     

  • van Dokkum, P. G. & Conroy, C. A substantial population of low-mass stars in luminous elliptical galaxies. Nature 468, 940–942 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Treu, T. et al. The initial mass function of early-type galaxies. Astrophys. J. 709, 1195–1202 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Cappellari, M. et al. Systematic variation of the stellar initial mass function in early-type galaxies. Nature 484, 485–488 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Martín-Navarro, I. et al. IMF–metallicity: a tight local relation revealed by the CALIFA survey. Astrophys. J. Let. 806, L31 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Z.-Y. et al. Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time. Nature 558, 260–263 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bartko, H. et al. An extremely top-heavy initial mass function in the Galactic center stellar disks. Astrophys. J. 708, 834–840 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Smith, R. J. Evidence for initial mass function variation in massive early-type galaxies. Annu. Rev. Astron. Astrophys. 58, 577–615 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Conroy, C. Modeling the panchromatic spectral energy distributions of galaxies. Annu. Rev. Astron. Astrophys. 51, 393–455 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Offner, S. S. R. et al. The origin and universality of the stellar initial mass function. In Protostars and Planets VI (eds Reipurth, B. et al.) 53 (Univ. Arizona Press, 2014).

  • Kroupa, P. et al. The distribution of low-mass stars in the Galactic disc. Mon. Not. R. Astron. Soc. 262, 545–587 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Kroupa, P. & Tout, C. A. The theoretical mass–magnitude relation of low mass stars and its metallicity dependence. Mon. Not. R. Astron. Soc. 287, 402–414 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, J. et al. Stellar parameterization of LAMOST M dwarf stars. Astrophys. J. Suppl. Ser. 253, 45 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, C. et al. Mapping the Milky Way with LAMOST I: method and overview. Res. Astron. Astrophys. 17, 096 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, C. Smoking gun of the dynamical processing of solar-type field binary stars. Mon. Not. R. Astron. Soc. 490, 550–565 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Moe, M. et al. The close binary fraction of solar-type stars is strongly anticorrelated with metallicity. Astrophys. J. 875, 61 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Salpeter, E. E. The luminosity function and stellar evolution. Astrophys. J. 121, 161 (1955).

  • Yan, Z. et al. Chemical evolution of ultra-faint dwarf galaxies in the self-consistently calculated integrated galactic IMF theory. Astron. Astrophys. 637, A68 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Reylé, C. & Robin, A. C. Early galaxy evolution from deep wide field star counts. II. First estimate of the thick disc mass function. Astron. Astrophys. 373, 886–894 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Geha, M. et al. The stellar initial mass function of ultra-faint dwarf galaxies: evidence for IMF variations with galactic environment. Astrophys. J. 771, 29 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Kordopatis, G. et al. The rich are different: evidence from the RAVE survey for stellar radial migration. Mon. Not. R. Astron. Soc. 447, 3526–3535 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jeřábková, T. Impact of metallicity and star formation rate on the time-dependent, galaxy-wide stellar initial mass function. Astron. Astrophys. 620, A39 (2018).

    Article 

    Google Scholar
     

  • Ting, Y.-S. & Rix, H.-W. The vertical motion history of disk stars throughout the Galaxy. Astrophys. J. 878, 21 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Larson, R. B. Early star formation and the evolution of the stellar initial mass function in galaxies. Mon. Not. R. Astron. Soc. 301, 569–581 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Padoan, P. & Nordlund, Å.The stellar initial mass function from turbulent fragmentation. Astrophys. J. 576, 870–879 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Papadopoulos, P. P. et al. Extreme cosmic ray dominated regions: a new paradigm for high star formation density events in the Universe. Mon. Not. R. Astron. Soc. 414, 1705–1714 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Z.-Y. et al. Gone with the heat: a fundamental constraint on the imaging of dust and molecular gas in the early Universe. Royal Society Open Science 3, 160025 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, G. et al. LAMOST spectral survey — an overview. Res. Astron. Astrophys. 12, 723–734 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Deng, L.-C. et al. LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) — the survey’s science plan. Res. Astron. Astrophys. 12, 735–754 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Majewski, S. R. et al. The Apache Point Observatory Galactic Evolution Experiment (APOGEE). Astron. J. 154, 94 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Jönsson, H. et al. APOGEE data and spectral analysis from SDSS Data Release 16: seven years of observations including first results from APOGEE-South. Astron. J. 160, 120 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, B. et al. Deriving the stellar labels of LAMOST spectra with the Stellar LAbel Machine (SLAM). Astrophys. J. Suppl. Ser. 246, 9 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yi, Z. et al. M dwarf catalog of the LAMOST pilot survey. Astrophys. J. 147, 33 (2014).


    Google Scholar
     

  • Gaia Collaboration. et al. Gaia Data Release 2: summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

    Article 

    Google Scholar
     

  • Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astrophys. J. 131, 1163–1183 (2006).


    Google Scholar
     

  • Green, G. M. et al. A 3D dust map based on Gaia, Pan-STARRS 1, and 2MASS. Astrophys. J. 887, 93 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, S. & Chen, X. The optical to mid-infrared extinction law based on the APOGEE, Gaia DR2, Pan-STARRS1, SDSS, APASS, 2MASS, and WISE Surveys. Astrophys. J. 877, 116 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bailer-Jones, C. A. L. et al. Estimating distance from parallaxes. IV. Distances to 1.33 billion stars in Gaia Data Release 2. Astron. J. 156, 58 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Bressan, A. et al. PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 427, 127–145 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, Y. et al. Improving PARSEC models for very low mass stars. Mon. Not. R. Astron. Soc. 444, 2525–2543 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In KDD ’16: Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery And Data Mining, (eds Krishnapuram, B. et al.) 785–794 (ACM, 2016).

  • Mann, A. W. et al. How to constrain your M dwarf. II. The mass–luminosity–metallicity relation from 0.075 to 0.70 solar masses. Astrophys. J. 871, 63 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Miller, G. E. & Scalo, J. M. The initial mass function and stellar birthrate in the solar neighborhood. Astrophys. J. Suppl. Ser. 41, 513–547 (1979).

    Article 

    Google Scholar
     

  • El-Badry, K., Weisz, D. R. & Quataert, E. The statistical challenge of constraining the low-mass IMF in Local Group dwarf galaxies. Mon. Not. R. Astron. Soc. 468, 319–332 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Xu, Y. et al. Mapping the Milky Way with LAMOST—II. The stellar halo. Mon. Not. R. Astron. Soc. 473, 1244–1257 (2018).

  • Wang, H.-F., Liu, C., Xu, Y., Wan, J.-C. & Deng, L. Mapping the Milky Way with LAMOST—III. Complicated spatial structure in the outer disc. Mon. Not. R. Astron. Soc. 478, 3367–3379 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Jurić, M. et al. The Milky Way Tomography with SDSS. I. Stellar number density distribution. Astrophys. J. 673, 864–914 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Salvatier, J., Wiecki, T. V. & Fonnesbeck, C. Probabilistic programming in Python using PyMC3. PeerJ Comput. Sci. 2, e55 (2016).

  • Sharma, S. et al. Galaxia: a code to generate a synthetic survey of the Milky Way. Astrophys. J. 730, 3 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Dotter, A. et al. The Dartmouth Stellar Evolution Database. Astrophys. J. Suppl. Ser. 178, 89–101 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bovy, J. et al. galpy: a Python library for galactic dynamics. Astrophys. J. Suppl. Ser. 216, 29 (2015).

    Article 
    ADS 

    Google Scholar
     

  • The GRAVITY Collaboration. A geometric distance measurement to the Galactic center black hole with 0.3% uncertainty. Astron. Astrophys. 625, L10 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Bovy, J. et al. The Milky Way’s circular-velocity curve between 4 and 14 kpc from APOGEE data. Astrophys. J. 759, 131 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Schönrich, R. et al. Local kinematics and the local standard of rest. Mon. Not. R. Astron. Soc. 403, 1829–1833 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Binney, J. & Tremaine, S. Galactic Dynamics 2nd edn (Princeton Univ. Press, 2008).

  • Binney, J. Actions for axisymmetric potentials. Mon. Not. R. Astron. Soc. 426, 1324–1327 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Sanders, J. L. & Binney, J. A review of action estimation methods for galactic dynamics. Mon. Not. R. Astron. Soc. 457, 2107–2121 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jenkins, A. & Binney, J. Spiral heating of galactic discs. Mon. Not. R. Astron. Soc. 245, 305–317 (1990).

    ADS 

    Google Scholar
     

  • Wu, Y. et al. Mass and age of red giant branch stars observed with LAMOST and Kepler. Mon. Not. R. Astron. Soc. 475, 3633–3643 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Delfosse, X. et al. M dwarfs binaries: results from accurate radial velocities and high angular resolution observations. In Spectroscopically and Spatially Resolving the Components of the Close Binary Stars (eds Hilditch R. W. et al.) 166–174 (Astronomical Society of the Pacific, 2004).

  • Source link

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button