Exoplanets

Evidence for the volatile-rich composition of a 1.5-Earth-radius planet

  • Rowe, J. F. et al. Validation of Kepler’s multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems. Astrophys. J. 784, 45 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Kipping, D. M. et al. The hunt for exomoons with Kepler (HEK). IV. A search for moons around eight M dwarfs. Astrophys. J. 784, 28 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Jontof-Hutter, D., Rowe, J. F., Lissauer, J. J., Fabrycky, D. C. & Ford, E. B. The mass of the Mars-sized exoplanet Kepler-138 b from transit timing. Nature 522, 321–323 (2015).

  • Almenara, J. M., Díaz, R. F., Dorn, C., Bonfils, X. & Udry, S. Absolute densities in exoplanetary systems: photodynamical modelling of Kepler-138. Mon. Not. R. Astron. Soc. 478, 460–486 (2018).

  • Howard, A. W. et al. The California Planet Survey. I. Four new giant exoplanets. Astrophys. J. 721, 1467 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Kopparapu, R. K. et al. Habitable zones around main-sequence stars: new estimates. Astrophys. J. 765, 131 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Kubyshkina, D. et al. Grid of upper atmosphere models for 1–40 M planets: application to CoRoT-7 b and HD 219134 b,c. Astron. Astrophys. 619, A151 (2018).

  • Lammer, H. et al. Outgassing history and escape of the martian atmosphere and water inventory. Space Sci. Rev. 174, 113–154 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Dong, C., Jin, M. & Lingam, M. Atmospheric Escape From TOI-700 d: Venus versus Earth Analogs. Astrophys. J. Lett. 896, L24 (2020).

  • Khodachenko, M. L., Shaikhislamov, I. F., Lammer, H. & Prokopov, P. A. Atmosphere expansion and mass loss of close-orbit giant exoplanets heated by stellar XUV. II. Effects of planetary magnetic field; structuring of inner magnetosphere. Astrophys. J. 813, 50 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Kite, E. S. & Barnett, M. N. Exoplanet secondary atmosphere loss and revival. Proceedings of the National Academy of Science 117, 18264–18271 (2020)

  • Bower, D. J., Hakim, K., Sossi, P. A. & Sanan, P. Retention of Water in Terrestrial Magma Oceans and Carbon-rich Early Atmospheres. The Planetary Science Journal 3, 93 (2022)

  • Aguichine A., Mousis O., Deleuil M., Marcq E., Mass-Radius Relationships for Irradiated Ocean Planets. Astrophys. J. 914, 84 (2021).

  • Piaulet, C. et al. WASP-107b’s density is even lower: a case study for the physics of planetary gas envelope accretion and orbital migration. Astron. J. 161, 70 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Bower, D. J. et al. Linking the evolution of terrestrial interiors and an early outgassed atmosphere to astrophysical observations. Astron. Astrophys. 631, A103 (2019).

    Article 

    Google Scholar
     

  • Kite, E. S., Fegley B. Jr, Schaefer, L. & Ford, E. Atmosphere origins for exoplanet sub-Neptunes. Preprint at https://arxiv.org/abs/2001.09269 (2020).

  • Dorn, C. & Lichtenberg, T. Hidden Water in Magma Ocean Exoplanets. Astrophys. J. 922, no. 1, (2021).

  • Luger, R. & Barnes, R. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. Astrobiology 15, 119–143 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Lopez, E. D. Born dry in the photoevaporation desert: Kepler’s ultra-short-period planets formed water-poor. Mon. Not. R. Astron. Soc. 472, 245–253 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Kite, E. S. & Schaefer, L. Water on hot rocky exoplanets. Astrophys. J. 909, L22 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Kuchner, M. J. Volatile-rich Earth-mass planets in the habitable zone. Astrophys. J. Lett. 596, L105–L108 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Huang, S. & Ormel, C. W. The dynamics of the TRAPPIST-1 system in the context of its formation. Mon. Not. R. Astron. Soc. 511, no. 3, 3814–3831 (2022).

  • Elkins-Tanton, L. T. & Seager, S. Ranges of atmospheric mass and composition of super-Earth exoplanets. Astrophys. J. 685, 1237–1246 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Luger, R. et al. Habitable evaporated cores: transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs. Astrobiology 15, 57–88 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Weiss, L. M. & Marcy, G. W. The mass-radius relation for 65 exoplanets smaller than 4 Earth radii. Astrophys. J. Lett. 783, L6 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Lundkvist, M. S. et al. Hot super-Earths stripped by their host stars. Nat. Commun. 7, 11201 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Otegi, J. F., Bouchy, F. & Helled, R. Revisited mass-radius relations for exoplanets below 120 M. Astron. Astrophys. 634, A43 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Gupta, A. & Schlichting, H. E. Sculpting the valley in the radius distribution of small exoplanets as a by-product of planet formation: the core-powered mass-loss mechanism. Mon. Not. R. Astron. Soc. 487, 24–33 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Lee, E. J. & Chiang, E. Breeding super-Earths and birthing super-puffs in transitional disks. Astrophys. J. 817, 90 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Owen, J. E. & Wu, Y. Kepler planets: a tale of evaporation. Astrophys. J. 775, 105 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Lopez, E. D. & Fortney, J. J. The role of core mass in controlling evaporation: the Kepler radius distribution and the Kepler-36 density dichotomy. Astrophys. J. 776, 2 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Mills, S. M. & Mazeh, T. The planetary mass-radius relation and its dependence on orbital period as measured by transit timing variations and radial velocities. Astrophys. J. 839, L8 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Bitsch, B., Raymond, S. N. & Izidoro, A. Rocky super-Earths or waterworlds: the interplay of planet migration, pebble accretion, and disc evolution. Astron. Astrophys. 624, A109 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Parviainen, H. & Aigrain, S. LDTK: limb darkening toolkit. Mon. Not. R. Astron. Soc. 453, 3821–3826 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Kreidberg, L. batman: basic transit model calculation in Python. Publ. Astron. Soc. Pac. 127, 1161 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. Emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

  • Deck, K. M., Agol, E., Holman, M. J. & Nesvorný, D. TTVFast: An efficient and accurate code for transit timing inversion problems. Astrophys. J. 787, 132 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Rein, H. & Liu, S.-F. REBOUND: an open-source multi-purpose N-body code for collisional dynamics. Astron. Astrophys. 537, A128 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Rein, H. & Tamayo, D. WHFAST: a fast and unbiased implementation of a symplectic Wisdom-Holman integrator for long-term gravitational simulations. Mon. Not. R. Astron. Soc. 452, 376–388 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Feroz, F., Hobson, M. P. & Bridges, M. MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601–1614 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Shaw, J. R., Bridges, M. & Hobson, M. P. Efficient Bayesian inference for multimodal problems in cosmology. M. Not. R. Astron. Soc. 378, 1365–1370 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Mukherjee, P., Parkinson, D. & Liddle, A. R. A nested sampling algorithm for cosmological model selection. Astrophys. J. 638, L51–L54 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Skilling, J. Bayesian Inference and Maximum Entropy Methods in Science and Engineering MAXENT 2004 (eds Fischer, R., Dose, V., Preuss, R. & von Toussaint, U.) 395–405 (AIP, 2004).

  • Fulton, B. J., Petigura, E. A., Blunt, S. & Sinukoff, E. RadVel: the radial velocity modeling toolkit. Publ. Astron. Soc. Pac. 130, 044504 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Ambikasaran, S., Foreman-Mackey, D., Greengard, L., Hogg, D. W. & O’Neil, M. Fast direct methods for Gaussian processes. IEEE Trans. Pattern Anal. Mach. Intell. 38, 252 (2015).

  • Benneke, B. et al. A sub-Neptune exoplanet with a low-metallicity methane-depleted atmosphere and Mie-scattering clouds. Nat. Astron., 3, 813–821 (2019).

  • Benneke, B. et al. Water vapor and clouds on the habitable-zone sub-Neptune exoplanet K2-18b. Astrophys. J. 887, L14 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Deming, D. et al. Infrared transmission spectroscopy of the exoplanets HD 209458b and XO-1b using the Wide Field Camera-3 on the Hubble Space Telescope. Astrophys. J. 774, 95 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Tsiaras, A. et al. A new approach to analyzing HST spatial scans: the transmission spectrum of HD 209458 b. Astrophys. J. 832, 202 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Grillmair, C. J. et al. Pointing effects and their consequences for Spitzer IRAC exoplanet observations. Observatory Operations: Strategies, Processes, and Systems IV, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (eds Peck, A. B., Seaman, R., L. & Comeron, F.) vol. 8448, 84481I (2012).

  • Benneke, B. et al. Spitzer observations confirm and rescue the habitable-zone super-Earth K2-18b for future characterization. Astrophys. J. 834, 187 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Sing, D. K. Stellar limb-darkening coefficients for CoRot and Kepler. Astron. Astrophys. 510, A21 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Kreidberg, L. et al. Clouds in the atmosphere of the super-Earth exoplanet GJ1214b. Nature 505, 69–72 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Kreidberg, L. et al. A detection of water in the transmission spectrum of the hot Jupiter WASP-12b and implications for its atmospheric composition. Astrophys. J. 814, 66 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Deming, D. et al. Spitzer secondary eclipses of the dense, modestly-irradiated, giant exoplanet HAT-P-20b using pixel-level decorrelation. Astrophys. J. 805, 132 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Stevenson, K. B. et al. Transit and eclipse analyses of the exoplanet HD 149026b using bliss mapping. Astrophys. J. 754, 136 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Ragozzine, D. & Holman, M. J. The value of systems with multiple transiting planets. Preprint at https://arxiv.org/abs/1006.3727 (2010).

  • Agol, E. et al. Refining the Transit-timing and Photometric Analysis of TRAPPIST-1: Masses, Radii, Densities, Dynamics, and Ephemerides. The Planetary Science Journal 2, no. 1 (2021).

  • Jontof-Hutter, D. et al. Following Up the Kepler Field: Masses of Targets for Transit Timing and Atmospheric Characterization. Astron. J. 161, 246.

  • Ford, E. B. Improving the efficiency of Markov chain Monte Carlo for analyzing the orbits of extrasolar planets. Astrophys. J. 642, 505–522 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Mann, A. W., Feiden, G. A., Gaidos, E., Boyajian, T. & von Braun, K. How to constrain your M dwarf: measuring effective temperature, bolometric luminosity, mass, and radius. Astrophys. J. 804, 64 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Mann, A. W. et al. How to constrain your M dwarf. II. The mass-luminosity-metallicity relation from 0.075 to 0.70 solar masses. Astrophys. J. 871, 63 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Berger, T. A. et al. The Gaia-Kepler Stellar Properties Catalog. I. Homogeneous Fundamental Properties for 186,301 Kepler Stars. Astron. J. 159, 280 (2020).

  • Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 5, 65–80 (2010).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Nelson, B. E., Ford, E. B. & Payne, M. J. RUN DMC: an efficient, parallel code for analyzing radial velocity observations using N-body integrations and differential evolution Markov chain Monte Carlo. Astrophys. J. Suppl. Ser. 210, 11 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Heyl, J. S. & Gladman, B. J. Using long-term transit timing to detect terrestrial planets. Mon. Not. R. Astron. Soc. 377, 1511–1519 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. 580, L171–L175 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Wang, J., Fischer, D. A., Xie, J.-W. & Ciardi, D. R. Influence of stellar multiplicity on planet formation. IV. Adaptive optics imaging of Kepler stars with multiple transiting planet candidates. Astrophys. J. 813, 130 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Vogt, S. S. et al. HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope. In Instrumentation in Astronomy VIII, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (eds Crawford, D. L. & Craine, E. R.) vol. 2198, 362 (1994).

  • Butler, R. P. et al. Attaining Doppler precision of 3 m s-1. Publ. Astron. Soc. Pac. 108, 500 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Amado, P. J. et al. The CARMENES search for exoplanets around M dwarfs. Two terrestrial planets orbiting G 264-012 and one terrestrial planet orbiting Gl 393. Astron. Astrophys. 650, A188 (2021).

  • Ahrer, E. et al. The HARPS search for southern extra-solar planets – XLV. Two Neptune mass planets orbiting HD 13808: a study of stellar activity modelling’s impact on planet detection. Mon. Not. R. Astron. Soc. 503, 1248–1263 (2021).

  • McQuillan, A., Aigrain, S. & Mazeh, T. Measuring the rotation period distribution of field M dwarfs with Kepler. Mon. Not. R. Astron. Soc. 432, 1203–1216 (2013).

    Article 
    ADS 

    Google Scholar
     

  • McQuillan, A., Mazeh, T. & Aigrain, S. Stellar rotation periods of the Kepler objects of interest: a dearth of close-in planets around fast rotators. Astrophys. J. Lett. 775, L11 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Benneke, B. Strict upper limits on the carbon-to-oxygen ratios of eight hot Jupiters from self-consistent atmospheric retrieval. Preprint at https://arxiv.org/abs/1504.07655 (2015).

  • Benneke, B. & Seager, S. Atmospheric retrieval for super-Earths: uniquely constraining the atmospheric composition with transmission spectroscopy. Astrophys. J. 753, 100 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Benneke, B. & Seager, S. How to distinguish between cloudy mini-Neptunes and water/volatile-dominated super-Earths. Astrophys. J. 778, 153 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Tange, O. GNU parallel 20200722 (’privacy shield’). Zenodo https://doi.org/10.5281/zenodo.3956817 (2020).

  • Jeffreys, H. Theory of Probability. 3rd Edition, Oxford University Press, London, 95–103 (1961).

  • Line, M. R. & Parmentier, V. The influence of nonuniform cloud cover on transit transmission spectra. Astrophys. J. 820, 78 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Miller-Ricci, E., Seager, S. & Sasselov, D. The atmospheric signatures of super-Earths: how to distinguish between hydrogen-rich and hydrogen-poor atmospheres. Astrophys. J. 690, 1056–1067 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Thorngren, D. P., Gao, P. & Fortney, J. J. The Intrinsic Temperature and Radiative-Convective Boundary Depth in the Atmospheres of Hot Jupiters. Astrophys. J. 884, L6 (2019).

  • Chabrier, G., Mazevet, S. & Soubiran, F. A new equation of state for dense hydrogen-helium mixtures. Astrophys. J. 872, 51 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Thompson, S. L. 1990, ANEOS—Analytic Equations of State for Shock Physics Codes, Sandia Natl. Lab. Doc. SAND89–2951 (http://prod.sandia.gov/techlib/access-control.cgi/1989/892951.pdf).

  • Mazevet, S., Licari, A., Chabrier, G. & Potekhin, A. Y. Ab initio based equation of state of dense water for planetary and exoplanetary modeling. Astron. Astrophys. 621, A128 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Valencia, D., Guillot, T., Parmentier, V. & Freedman, R. S. Bulk composition of GJ 1214b and other sub-Neptune exoplanets. Astrophys. J. 775, 10 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Madhusudhan, N., Nixon, M. C., Welbanks, L., Piette, A. A. A. & Booth, R. A. The interior and atmosphere of the habitable-zone exoplanet K2-18b. Astrophys. J. 891, L7 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Lopez, E. D. & Fortney, J. J. Understanding the mass-radius relation for sub-Neptunes: radius as a proxy for composition. Astrophys. J. 792, 1 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Hubbard, W. B. et al. Theory of extrasolar giant planet transits. Astrophys. J. 560, 413–419 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Otegi, J. F. et al. Impact of the measured parameters of exoplanets on the inferred internal structure. Astron. Astrophys. 640, A135 (2020).

    Article 

    Google Scholar
     

  • Lozovsky, M., Helled, R., Dorn, C. & Venturini, J. Threshold radii of volatile-rich planets. Astrophys. J. 866, 49 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Turbet, M., Ehrenreich, D., Lovis, C., Bolmont, E. & Fauchez, T. The runaway greenhouse radius inflation effect. An observational diagnostic to probe water on Earth-sized planets and test the habitable zone concept. Astron. Astrophys. 628, A12 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Turbet, M. et al. Revised mass-radius relationships for water-rich rocky planets more irradiated than the runaway greenhouse limit. Astron. Astrophys. 638, A41 (2020).

    Article 

    Google Scholar
     

  • Zeng, L., Sasselov, D. D. & Jacobsen, S. B. Mass-radius relation for rocky planets based on PREM. Astrophys. J. 819, 127 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Madhusudhan, N., Piette, A. A. A. & Constantinou, S. Habitability and biosignatures of Hycean worlds. Astrophys. J. 918, 1 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Kosiarek, M. R. et al. Physical Parameters of the Multiplanet Systems HD 106315 and GJ 9827. Astron. J. 161, 47 (2021).

  • Curtis, J. L. et al. When Do Stalled Stars Resume Spinning Down? Advancing Gyrochronology with Ruprecht 147. Astrophys. J. 904, 140 (2020).

  • Muirhead, P. S. et al. Characterizing the cool Kepler objects of interests. New effective temperatures, metallicities, masses, and radii of low-mass Kepler planet-candidate host stars. Astrophys. J. 750, L37 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Watson, A. J., Donahue, T. M. & Walker, J. C. G. The dynamics of a rapidly escaping atmosphere: applications to the evolution of earth and Venus. Icarus 48, 150–166 (1981).

    Article 
    ADS 

    Google Scholar
     

  • Owen, J. E. & Wu, Y. The evaporation valley in the Kepler planets. Astrophys. J. 847, 29 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Feinstein, A. D. et al. Flare Statistics for Young Stars from a Convolutional Neural Network Analysis of TESS Data. Astron. J. 160, 219 (2020).

  • Ribas, I., Guinan, E. F., Güdel, M. & Audard, M. Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1-1700 Å). Astrophys. J. 622, 680–694 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Jackson, A. P., Davis, T. A. & Wheatley, P. J. The coronal X-ray-age relation and its implications for the evaporation of exoplanets. Mon. Not. R. Astron. Soc. 422, 2024–2043 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Tu, L., Johnstone, C. P., Güdel, M. & Lammer, H. The extreme ultraviolet and X-ray Sun in time: high-energy evolutionary tracks of a solar-like star. Astron. Astrophys. 577, L3 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Güdel, M., Guinan, E. F. & Skinner, S. L. The X-ray Sun in time: a study of the long-term evolution of coronae of solar-type stars. Astrophys. J. 483, 947–960 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Murray-Clay, R. A., Chiang, E. I. & Murray, N. Atmospheric escape from hot Jupiters. Astrophys. J. 693, 23–42 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Owen, J. E. & Jackson, A. P. Planetary evaporation by UV & X-ray radiation: basic hydrodynamics. Mon. Not. R. Astron. Soc. 425, 2931 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Owen, J. E. & Alvarez, M. A. UV driven evaporation of close-in planets: energy-limited, recombination-limited, and photon-limited flows. Astrophys. J. 816, 34 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Erkaev, N. V. et al. EUV-driven mass-loss of protoplanetary cores with hydrogen-dominated atmospheres: the influences of ionization and orbital distance. Mon. Not. R. Astron. Soc. 460, 1300–1309 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Erkaev, N. V. et al. Roche lobe effects on the atmospheric loss from ‘hot Jupiters’. Astron. Astrophys. 472, 329–334 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Johnstone, C. P., Bartel, M. & Güdel, M. The active lives of stars: a complete description of the rotation and XUV evolution of F, G, K, and M dwarfs. Astron. Astrophys. 649, A96 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Schaefer, L. & Fegley, B. Chemistry of atmospheres formed during accretion of the Earth and other terrestrial planets. Icarus 208, 438–448 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Lichtenberg, T. et al. Vertically resolved magma ocean-protoatmosphere evolution: H2, H2O, CO2, CH4, CO, O2, and N2 as primary absorbers. J. Geophys. Res. Planets 126, e2020JE006711 (2021).

  • Sossi, P. A. Atmospheres in the baking. Nat. Astron. 5, 535–536 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Andrault, D., Monteux, J., Le Bars, M. & Samuel, H. The deep Earth may not be cooling down. Earth Planet. Sci. Lett. 443, 195 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Rackham, B. V., Apai, D. & Giampapa, M. S. The transit light source effect: false spectral features and incorrect densities for M-dwarf transiting planets. Astrophys. J. 853, 122 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Husser, T.-O. et al. A new extensive library of PHOENIX stellar atmospheres and synthetic spectra. Astron. Astrophys. 553, A6 (2013).

    Article 

    Google Scholar
     

  • Gao, P. & Zhang, X. Deflating super-puffs: impact of photochemical hazes on the observed mass-radius relationship of low-mass planets. Astrophys. J. 890, 93 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Lavvas, P., Koskinen, T., Steinrueck, M. E., García Muñoz, A. & Showman, A. P. Photochemical hazes in sub-Neptunian atmospheres with a focus on GJ 1214b. Astrophys. J. 878, 118 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Piro, A. L. Can rocky exoplanets with rings pose as sub-Neptunes? Astron. J. 156, 80 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Piro, A. L. & Vissapragada, S. Exploring whether super-puffs can be explained as ringed exoplanets. Astron. J. 159, 131 (2020). ArXiv: 1911.09673.

    Article 
    ADS 

    Google Scholar
     

  • Clausen, N. & Tilgner, A. Dissipation in rocky planets for strong tidal forcing. Astron. Astrophys. 584, A60 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Chandrasekhar, S. Ellipsoidal Figures of Equilibrium. The Silliman Foundation Lectures (Yale Univ. Press, 1969).

  • Tremaine, S., Touma, J. & Namouni, F. Satellite dynamics on the Laplace surface. Astron. J. 137, 3706–3717 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Schlichting, H. E. & Chang, P. Warm Saturns: on the nature of rings around extrasolar planets that reside inside the ice line. Astrophys. J. 734, 117 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Astropy Collaborationet al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Article 

    Google Scholar
     

  • Astropy Collaborationet al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Pérez, F. & Granger, B. E. Ipython: A System for Interactive Scientific Computing, Computing in Science & Engineering, vol. 9 (2007).

  • Hunter, J. D. Matplotlib: a 2d graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article 

    Google Scholar
     

  • Zeng, L. & Sasselov, D. A detailed model grid for solid planets from 0.1 through 100 Earth masses. Publ. Astron. Soc. Pac. 125, 227 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Marcus, R. A., Sasselov, D., Hernquist, L. & Stewart, S. T. Minimum radii of super-Earths: constraints from giant impacts. Astrophys. J. Lett. 712, L73–L76 (2010).

    Article 
    ADS 

    Google Scholar
     

  • https://www.nature.com/articles/s41550-022-01835-4

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button