A kilonova following a long-duration gamma-ray burst at 350 Mpc
Norris, J. P., Cline, T. L., Desai, U. D. & Teegarden, B. J. Frequency of fast, narrow γ-ray bursts. Nature 308, 434–435 (1984).
Kouveliotou, C. et al. Identification of two classes of gamma-ray bursts. Astrophys. J. 413, L101–L104 (1993).
Galama, T. J. et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395, 670–672 (1998).
Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848, L12 (2017).
Goldstein, A. et al. An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A. Astrophys. J. 848, L14 (2017).
Norris, J. P. Implications of the lag-luminosity relationship for unified gamma-ray burst paradigms. Astrophys. J. 579, 386–403 (2002).
Norris, J. P. & Bonnell, J. T. Short gamma-ray bursts with extended emission. Astrophys. J. 643, 266–275 (2006).
Gehrels, N. et al. A new γ-ray burst classification scheme from GRB 060614. Nature 444, 1044–1046 (2006).
Arcavi, I. et al. Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. Nature 551, 64–66 (2017).
Coulter, D. A. et al. Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358, 1556–1558 (2017).
Lipunov, V. M. et al. MASTER optical detection of the first LIGO/Virgo neutron star binary merger GW170817. Astrophys. J. 850, 1 (2017).
Tanvir, N. R. et al. The emergence of a lanthanide-rich kilonova following the merger of two neutron stars. Astrophys. J. 848, L27 (2017).
Soares-Santos, M. The Dark Energy Survey and The Dark Energy Camera GW-EM Collaboration et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. I. Discovery of the optical counterpart using the dark energy camera. Astrophys. J. 848, L16 (2017).
Valenti, S. et al. The discovery of the electromagnetic counterpart of GW170817: kilonova AT 2017gfo/DLT17ck. Astrophys. J. 848, L24 (2017).
Stamatikos, M. et al. GRB 211211A: Swift-BAT refined analysis. GRB Coordinates Network, Circular Service, No. 31209 (2021).
Mangan, J., Dunwoody, R. & Meegan, C.; Fermi GBM Team. GRB 211211A: Fermi GBM observation. GRB Coordinates Network, Circular Service, No. 31210 (2021).
Kaneko, Y., Bostancí, Z. F., Göğüş, E. & Lin, L. Short gamma-ray bursts with extended emission observed with Swift/BAT and Fermi/GBM. Mon. Not. R. Astron. Soc. 452, 824–837 (2015).
Bloom, J. S., Kulkarni, S. R. & Djorgovski, S. G. The observed offset distribution of gamma-ray bursts from their host galaxies: a robust clue to the nature of the progenitors. Astron. J. 123, 1111–1148 (2002).
Lamb, G. P. et al. GRB jet structure and the jet break. Mon. Not. R. Astron. Soc. 506, 4163–4174 (2021).
Villar, V. A. et al. The combined ultraviolet, optical, and near-infrared light curves of the kilonova associated with the binary neutron star merger GW170817: unified data set, analytic models, and physical implications. Astrophys. J. Lett. 851, L21 (2017).
Nicholl, M. et al. Tight multimessenger constraints on the neutron star equation of state from GW170817 and a forward model for kilonova light-curve synthesis. Mon. Not. R. Astron. Soc. 505, 3016–3032 (2021).
Sekiguchi, Y., Kiuchi, K., Kyutoku, K. & Shibata, M. Dynamical mass ejection from binary neutron star mergers: radiation-hydrodynamics study in general relativity. Phys. Rev. D 91, 064059 (2015).
Metzger, B. D. & Fernández, R. Red or blue? A potential kilonova imprint of the delay until black hole formation following a neutron star merger. Mon. Not. R. Astron. Soc. 441, 3444–3453 (2014).
Bauswein, A., Goriely, S. & Janka, H.-T. Systematics of dynamical mass ejection, nucleosynthesis, and radioactively powered electromagnetic signals from neutron-star mergers. Astrophys. J. 773, 78 (2013).
Metzger, B. D., Thompson, T. A. & Quataert, E. A magnetar origin for the kilonova ejecta in GW170817. Astrophys. J. 856, 101 (2018).
Piro, A. L. & Kollmeier, J. A. Evidence for cocoon emission from the early light curve of SSS17a. Astrophys. J. 855, 103 (2018).
Gompertz, B. P., O’Brien, P. T., Wynn, G. A. & Rowlinson, A. Can magnetar spin-down power extended emission in some short GRBs? Mon. Not. R. Astron. Soc. 431, 1745–1751 (2013).
Bernardini, M. G. et al. Comparing the spectral lag of short and long gamma-ray bursts and its relation with the luminosity. Mon. Not. R. Astron. Soc. 446, 1129–1138 (2015).
Nugent, A. E. et al. Short GRB host galaxies II: a legacy sample of redshifts, stellar population properties, and implications for their neutron star merger origins. Preprint at https://arxiv.org/abs/2206.01764 (2022).
Perley, D. A. et al. A population of massive, luminous galaxies hosting heavily dust-obscured gamma-ray bursts: implications for the use of GRBs as tracers of cosmic star formation. Astrophys. J. 778, 128 (2013).
Cano, Z. Gamma-ray burst supernovae as standardizable candles. Astrophys. J. 794, 121 (2014).
Olivares, E. F. et al. The fast evolution of SN 2010bh associated with XRF 100316D. Astron. Astrophys. 539, A76 (2012).
King, A., Olsson, E. & Davies, M. B. A new type of long gamma-ray burst. Mon. Not. R. Astron. Soc. 374, 34–36 (2007).
Leibler, C. N. & Berger, E. The stellar ages and masses of short gamma-ray burst host galaxies: investigating the progenitor delay time distribution and the role of mass and star formation in the short gamma-ray burst rate. Astrophys. J. 725, 1202–1214 (2010).
Lyman, J. D. et al. The host galaxies and explosion sites of long-duration gamma ray bursts: Hubble Space Telescope near-infrared imaging. Mon. Not. R. Astron. Soc. 467, 1795–1817 (2017).
Metzger, B. D., Quataert, E. & Thompson, T. A. Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down. Mon. Not. R. Astron. Soc. 385, 1455–1460 (2008).
Metzger, B. D., Arcones, A., Quataert, E. & Martínez-Pinedo, G. The effects of r-process heating on fallback accretion in compact object mergers. Mon. Not. R. Astron. Soc. 402, 2771–2777 (2010).
Desai, D., Metzger, B. D. & Foucart, F. Imprints of r-process heating on fall-back accretion: distinguishing black hole-neutron star from double neutron star mergers. Mon. Not. R. Astron. Soc. 485, 4404–4412 (2019).
Fong, W., Berger, E., Margutti, R. & Zauderer, B. A. A decade of short-duration gamma-ray burst broadband afterglows: energetics, circumburst densities, and jet opening angles. Astrophys. J. 815, 102 (2015).
von Kienlin, A. et al. The fourth Fermi-GBM gamma-ray burst catalog: a decade of data. Astrophys. J. 893, 46 (2020).
Bennett, C. L., Larson, D., Weiland, J. L. & Hinshaw, G. The 1% concordance Hubble constant. Astrophys. J. 794, 135 (2014).
Meegan, C. et al. The Fermi gamma-ray burst monitor. Astrophys. J. 702, 791–804 (2009).
Adriani, O. et al. Extended measurement of the cosmic-ray electron and positron spectrum from 11 GeV to 4.8 TeV with the calorimetric electron telescope on the International Space Station. Phys. Rev. Lett. 120, 261102 (2018).
Tamura, T. et al. GRB 211211A: CALET Gamma-Ray Burst Monitor detection. GRB Coordinates Network, Circular Service, No. 31226 (2021).
Vedrenne, G. et al. SPI: the spectrometer aboard INTEGRAL. Astron. Astrophys. 411, 63–70 (2003).
Minaev, P. & Pozanenko, A.; GRB IKI FuN. GRB 211211A: redshift estimation and SPI-ACS/INTEGRAL detection. GRB Coordinates Network, Circular Service, No. 31230 (2021).
Burrows, D. N. et al. The Swift X-ray telescope. Space Sci. Rev. 120, 165–195 (2005).
Evans, P. A. et al. An online repository of Swift/XRT light curves of γ-ray bursts. Astron. Astrophys. 469, 379–385 (2007).
Evans, P. A. et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. Mon. Not. R. Astron. Soc. 397, 1177–1201 (2009).
Gehrels, N. et al. Correlations of prompt and afterglow emission in Swift long and short gamma-ray bursts. Astrophys. J. 689, 1161–1172 (2008).
Poole, T. S. et al. Photometric calibration of the Swift ultraviolet/optical telescope. Mon. Not. R. Astron. Soc. 383, 627–645 (2008).
Breeveld, A. A. et al. An updated ultraviolet calibration for the Swift/UVOT. AIP Conf. Proc. 1358, 373–376 (2011).
McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. ASP Conf. Ser. 376, 127–130 (2007).
Malesani, D. B. et al. GRB 211211A: NOT optical spectroscopy. GRB Coordinates Network, Circular Service, No. 31221 (2021).
Chambers, K. C. et al. The Pan-STARRS1 Surveys. Preprint at https://arxiv.org/abs/1612.05560 (2016).
Tody, D. IRAF in the nineties. ASP Conf. Ser. 52, 173–183 (1993).
Hodapp, K. W. et al. The Gemini Near-Infrared Imager (NIRI). Publ. Astron. Soc. Pac. 115, 1388–1406 (2003).
Hook, I. M. et al. The Gemini–North Multi-Object Spectrograph: performance in imaging, long-slit, and multi-object spectroscopic modes. Publ. Astron. Soc. Pac. 116, 425–440 (2004).
McLeod, B. et al. MMT and Magellan infrared spectrograph. Publ. Astron. Soc. Pac. 124, 1318 (2012).
Labrie, K., Anderson, K., Cárdenes, R., Simpson, C. & Turner, J. E. H. DRAGONS – Data Reduction for Astronomy from Gemini Observatory North and South. ASP Conf. Ser. 523, 321 (2019).
Paterson, K. POTPyRI: Pipeline for Optical/infrared Telescopes in Python for Reducing Images. https://github.com/CIERA-Transients/POTPyRI/.
Lang, D., Hogg, D. W., Mierle, K., Blanton, M. & Roweis, S. Astrometry.net: blind astrometric calibration of arbitrary astronomical images. Astron. J. 139, 1782–1800 (2010).
Seifert, W. et al. LUCIFER: a multimode NIR instrument for the LBT. Proc. SPIE 4841, 962–973 (2003).
Fontana, A. et al. The Hawk-I UDS and GOODS Survey (HUGS): survey design and deep K-band number counts. Astron. Astrophys. 570, A11 (2014).
Becker, A. HOTPANTS: High Order Transform of PSF ANd Template Subtraction. Astrophysics Source Code Library, record ascl:1504.004 (2015).
Alam, S. et al. The eleventh and twelfth data releases of the Sloan Digital Sky Survey: final data from SDSS-III. Astrophys. J. Suppl. Ser. 219, 12 (2015).
Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006).
Kilpatrick, C. D. hst123. https://github.com/charliekilpatrick/hst123.
Kilpatrick, C. D. et al. Hubble Space Telescope observations of GW170817: complete light curves and the properties of the galaxy merger of NGC 4993. Astrophys. J. 926, 49 (2022).
Dolphin, A. DOLPHOT: stellar photometry. Astrophysics Source Code Library, record ascl:1608.013 (2016).
Brown, W. R., Geller, M. J., Fabricant, D. G. & Kurtz, M. J. V- and R-band galaxy luminosity functions and low surface brightness galaxies in the century survey. Astron. J. 122, 714–728 (2001).
Wolf, C. et al. The COMBO-17 survey: evolution of the galaxy luminosity function from 25 000 galaxies with 0.2 < z < 1.2. Astron. Astrophys. 401, 73–98 (2003).
Willmer, C. N. A. et al. The Deep Evolutionary Exploratory Probe 2 galaxy redshift survey: the galaxy luminosity function to z ~ 1. Astrophys. J. 647, 853–873 (2006).
Reddy, N. A. & Steidel, C. C. A steep faint-end slope of the UV luminosity function at z ~ 2–3: implications for the global stellar mass density and star formation in low-mass halos. Astrophys. J. 692, 778–803 (2009).
Finkelstein, S. L. et al. The evolution of the galaxy rest-frame ultraviolet luminosity function over the first two billion years. Astrophys. J. 810, 71 (2015).
McConnachie, A. W. The observed properties of dwarf galaxies in and around the Local Group. Astron. J. 144, 4 (2012).
Fong, W. F. & Berger, E. The locations of short gamma-ray bursts as evidence for compact object binary progenitors. Astrophys. J. 776, 18 (2013).
Blanchard, P. K., Berger, E. & Fong, W.-f The offset and host light distributions of long gamma-ray bursts: a new view From HST observations of Swift bursts. Astrophys. J. 817, 144 (2016).
Fong, W.-f. et al. Short GRB host galaxies I: photometric and spectroscopic catalogs, host associations, and galactocentric offsets. Preprint at https://arxiv.org/abs/2206.01763 (2022).
Fabricant, D. et al. Binospec: a wide-field imaging spectrograph for the MMT. Publ. Astron. Soc. Pac. 131, 075004 (2019).
Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).
Prochaska, J. et al. PypeIt: the Python spectroscopic data reduction pipeline. J. Open Source Softw. 5, 2308 (2020).
Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245 (1989).
Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).
Leja, J. et al. An older, more quiescent universe from panchromatic SED fitting of the 3D-HST survey. Astrophys. J. 877, 140 (2019).
Johnson, B. D., Leja, J., Conroy, C. & Speagle, J. S. Stellar population inference with prospector. Astrophys. J. Suppl. Ser. 254, 22 (2021).
Speagle, J. S. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).
Conroy, C., Gunn, J. E. & White, M. The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. Astrophys. J. 699, 486–506 (2009).
Conroy, C. & Gunn, J. E. The propagation of uncertainties in stellar population synthesis modeling. III. Model calibration, comparison, and evaluation. Astrophys. J. 712, 833–857 (2010).
Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).
Gallazzi, A., Charlot, S., Brinchmann, J., White, S. D. M. & Tremonti, C. A. The ages and metallicities of galaxies in the local universe. Mon. Not. R. Astron. Soc. 362, 41–58 (2005).
Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).
Nugent, A. E. et al. The distant, galaxy cluster environment of the short GRB 161104A at z ~ 0.8 and a comparison to the short GRB host population. Astrophys. J. 904, 52 (2020).
Kennicutt, J. & Robert, C. Star formation in galaxies along the Hubble sequence. Annu. Rev. Astron. Astrophys. 36, 189–232 (1998).
Moustakas, J., Kennicutt, J., Robert, C. & Tremonti, C. A. Optical star formation rate indicators. Astrophys. J. 642, 775–796 (2006).
Tacchella, S. et al. Fast, slow, early, late: quenching massive galaxies at z ~ 0.8. Astrophys. J. 926, 134
Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).
Blanchard, P. K. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. VII. Properties of the host galaxy and constraints on the merger timescale. Astrophys. J. 848, L22 (2017).
Levan, A. J. et al. The environment of the binary neutron star merger GW170817. Astrophys. J. 848, L28 (2017).
Lamb, G. P. & Kobayashi, S. Electromagnetic counterparts to structured jets from gravitational wave detected mergers. Mon. Not. R. Astron. Soc. 472, 4953–4964 (2017).
Lamb, G. P., Mandel, I. & Resmi, L. Late-time evolution of afterglows from off-axis neutron star mergers. Mon. Not. R. Astron. Soc. 481, 2581–2589 (2018).
Pe’er, A. Dynamical model of an expanding shell. Astrophys. J. 752, L8 (2012).
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).
Gompertz, B. P. et al. A minute-long merger-driven gamma-ray burst from fast-cooling synchrotron emission. Nat. Astron. https://doi.org/10.1038/s41550-022-01819-4 (2022).
Lamb, G. P. et al. Short GRB 160821B: a reverse shock, a refreshed shock, and a well-sampled kilonova. Astrophys. J. 883, 48 (2019).
Cowperthwaite, P. S. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. II. UV, optical, and near-infrared light curves and comparison to kilonova models. Astrophys. J. 848, L17 (2017).
Guillochon, J. et al. MOSFiT: modular open source fitter for transients. Astrophys. J. Suppl. Ser. 236, 6 (2018).
Arnett, W. D. Type I supernovae. I. Analytic solutions for the early part of the light curve. Astrophys. J. 253, 785–797 (1982).
Nativi, L. et al. Can jets make the radioactively powered emission from neutron star mergers bluer? Mon. Not. R. Astron. Soc. 500, 1772–1783 (2021).
Lippuner, J. & et, al Signatures of hypermassive neutron star lifetimes on r-process nucleosynthesis in the disc ejecta from neutron star mergers. Mon. Not. R. Astron. Soc. 472, 904–918 (2017).
Darbha, S. & Kasen, D. Inclination dependence of kilonova light curves from globally aspherical geometries. Astrophys. J. 897, 150 (2020).
Kasliwal, M. M. et al. Illuminating gravitational waves: a concordant picture of photons from a neutron star merger. Science 358, 1559–1565 (2017).
Arcavi, I. The first hours of the GW170817 kilonova and the importance of early optical and ultraviolet observations for constraining emission models. Astrophys. J. 855, 23 (2018).
Radice, D., Perego, A., Bernuzzi, S. & Zhang, B. Long-lived remnants from binary neutron star mergers. Mon. Not. R. Astron. Soc. 481, 3670–3682 (2018).
Ciolfi, R. & Kalinani, J. V. Magnetically driven baryon winds from binary neutron star merger remnants and the blue kilonova of 2017 August. Astrophys. J. 900, L35 (2020).
Coughlin, M. W., Dietrich, T., Margalit, B. & Metzger, B. D. Multimessenger Bayesian parameter inference of a binary neutron star merger. Mon. Not. R. Astron. Soc. 489, 91–96 (2019).
Dietrich, T. & Ujevic, M. Modeling dynamical ejecta from binary neutron star mergers and implications for electromagnetic counterparts. Class. Quantum Gravity 34, 105014 (2017).
Gottlieb, O., Bromberg, O., Singh, C. B. & Nakar, E. The structure of weakly magnetized γ-ray burst jets. Mon. Not. R. Astron. Soc. 498, 3320–3333 (2020).
Duffell, P. C., Quataert, E., Kasen, D. & Klion, H. Jet dynamics in compact object mergers: GW170817 likely had a successful jet. Astrophys. J. 866, 3 (2018).
Matheson, T. et al. Photometry and spectroscopy of GRB 030329 and its associated supernova 2003dh: the first two months. Astrophys. J. 599, 394–407 (2003).
Clocchiatti, A., Suntzeff, N. B., Covarrubias, R. & Candia, P. The ultimate light curve of SN 1998bw/GRB 980425. Astron. J. 141, 163 (2011).
Cano, Z. et al. A trio of gamma-ray burst supernovae: GRB 120729A, GRB 130215A/SN 2013ez, and GRB 130831A/SN 2013fu. Astron. Astrophys. 568, A9 (2014).
Greiner, J. et al. A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst. Nature 523, 189–192 (2015).
Cano, Z. et al. GRB 161219B/SN 2016jca: a low-redshift gamma-ray burst supernova powered by radioactive heating. Astron. Astrophys. 605, A107 (2017).
Waxman, E., Ofek, E. O. & Kushnir, D. Strong NIR emission following the long duration GRB 211211A: dust heating as an alternative to a kilonova. Preprint at https://arxiv.org/abs/2206.10710 (2022).
Santini, P. et al. The evolution of the dust and gas content in galaxies. Astron. Astrophys. 562, A30 (2014).
Calura, F. et al. The dust-to-stellar mass ratio as a valuable tool to probe the evolution of local and distant star-forming galaxies. Mon. Not. R. Astron. Soc. 465, 54–67 (2017).
Kasen, D., Metzger, B., Barnes, J., Quataert, E. & Ramirez-Ruiz, E. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 551, 80–84 (2017).
Ukwatta, T. N. et al. Spectral lags and the lag–luminosity relation: an investigation with Swift BAT gamma-ray bursts. Astrophys. J. 711, 1073–1086 (2010).
Ukwatta, T. N. et al. The lag–luminosity relation in the GRB source frame: an investigation with Swift BAT bursts. Mon. Not. R. Astron. Soc. 419, 614–623 (2012).
Hannam, M. et al. Simple model of complete precessing black-hole-binary gravitational waveforms. Phys. Rev. Lett. 113, 151101 (2014).
Khan, S. et al. Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era. Phys. Rev. D 93, 044007 (2016).
Dietrich, T., Bernuzzi, S. & Tichy, W. Closed-form tidal approximants for binary neutron star gravitational waveforms constructed from high-resolution numerical relativity simulations. Phys. Rev. D 96, 121501 (2017).
Ashton, G. et al. BILBY: a user-friendly Bayesian inference library for gravitational-wave astronomy. Astrophys. J. Suppl. Ser. 241, 27 (2019).
LIGO Scientific Collaboration. LIGO Algorithm Library – LALSuite. free software (GPL) (2018).
Andreoni, I. et al. Follow up of GW170817 and its electromagnetic counterpart by Australian-led observing programmes. Publ. Astron. Soc. Aust. 34, e069 (2017).
Díaz, M. C. et al. Observations of the first electromagnetic counterpart to a gravitational-wave source by the TOROS collaboration. Astrophys. J. 848, L29 (2017).
Drout, M. R. et al. Light curves of the neutron star merger GW170817/SSS17a: implications for r-process nucleosynthesis. Science 358, 1570–1574 (2017).
Evans, P. A. et al. Swift and NuSTAR observations of GW170817: detection of a blue kilonova. Science 358, 1565–1570 (2017).
Hu, L. et al. Optical observations of LIGO source GW 170817 by the Antarctic Survey Telescopes at Dome A, Antarctica. Sci. Bull. 62, 1433–1438 (2017).
Pian, E. et al. Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 551, 67–70 (2017).
Pozanenko, A. S. et al. GRB 170817A associated with GW170817: multi-frequency observations and modeling of prompt gamma-ray emission. Astrophys. J. 852, L30 (2018).
Shappee, B. J. et al. Early spectra of the gravitational wave source GW170817: evolution of a neutron star merger. Science 358, 1574–1578 (2017).
Smartt, S. J. et al. A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551, 75–79 (2017).
Troja, E. et al. The X-ray counterpart to the gravitational-wave event GW170817. Nature 551, 71–74 (2017).
Utsumi, Y. et al. J-GEM observations of an electromagnetic counterpart to the neutron star merger GW170817. Publ. Astron. Soc. Jpn. 69, 101 (2017).
Rastinejad, J. C. et al. Probing kilonova ejecta properties using a catalog of short gamma-ray burst observations. Astrophys. J. 916, 89 (2021).
Siegel, D. M. GW170817—the first observed neutron star merger and its kilonova: implications for the astrophysical site of the r-process. Eur. Phys. J. A 55, 203 (2019).
Barnes, J., Kasen, D., Wu, M.-R. & Martínez-Pinedo, G. Radioactivity and thermalization in the ejecta of compact object mergers and their impact on kilonova light curves. Astrophys. J. 829, 110 (2016).
Troja, E. et al. The afterglow and kilonova of the short GRB 160821B. Mon. Not. R. Astron. Soc. 489, 2104–2116 (2019).
Fong, W. et al. The broadband counterpart of the short GRB 200522A at z = 0.5536: a luminous kilonova or a collimated outflow with a reverse shock? Astrophys. J. 906, 127 (2021).
Fox, D. B. et al. The afterglow of GRB 050709 and the nature of the short-hard γ-ray bursts. Nature 437, 845–850 (2005).
Berger, E., Fong, W. & Chornock, R. An r-process kilonova associated with the short-hard GRB 130603B. Astrophys. J. 774, L23 (2013).
Tanvir, N. R. et al. A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B. Nature 500, 547–549 (2013).
O’Connor, B. et al. A tale of two mergers: constraints on kilonova detection in two short GRBs at z ~ 0.5. Mon. Not. R. Astron. Soc. 502, 1279–1298 (2021).
Ito, N. et al. GRB 211211A: MITSuME Akeno optical observation. GRB Coordinates Network, Circular Service, No. 31217 (2021).
Xiao, S. et al. The quasi-periodically oscillating precursor of a long gamma-ray burst from a binary neutron star merger. Preprint at https://arxiv.org/abs/2205.02186 (2022).
Kumar, H. et al. GRB 211211A: HCT and GIT optical follow up observations. GRB Coordinates Network, Circular Service, No. 31227 (2021).
Strausbaugh, R. & Cucchiara, A. GRB 211211A: LCO optical observations. GRB Coordinates Network, Circular Service, No. 31214 (2021).
Mao, J., Xin, Y.-X. & Bai, J.-M. GRB 211211A: GMG upper limit. GRB Coordinates Network, Circular Service, No. 31232 (2021).
Gupta, R. et al. GRB 211211A: observations with the 3.6m Devasthal Optical Telescope. GRB Coordinates Network, Circular Service, No. 31299 (2021).
Moskvitin, A., Spiridonova, O., Belkin, S., Pozanenko, A. & Pankov, N.; GRB IKI FuN. GRB 211211A: SAO RAS optical observations. GRB Coordinates Network, Circular Service, No. 31234 (2021).
Mei, A. et al. GeV emission from a compact binary merger. Nature https://doi.org/10.1038/s41586-022-05350-5404-7 (2022).