Blackholes

A very luminous jet from the disruption of a star by a massive black hole

  • Rees, M. J. Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies. Nature 333, 523–528 (1988).

    Article 

    Google Scholar
     

  • Bloom, J. S. et al. A possible relativistic jetted outburst from a massive black hole fed by a tidally disrupted star. Science 333, 203–206 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Burrows, D. N. et al. Relativistic jet activity from the tidal disruption of a star by a massive black hole. Nature 476, 421–424 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Levan, A. J. et al. An extremely luminous panchromatic outburst from the nucleus of a distant galaxy. Science 333, 199–202 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Zauderer, B. A. et al. Birth of a relativistic outflow in the unusual γ-ray transient Swift J164449.3+573451. Nature 476, 425–428 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cenko, S. B. et al. Swift J2058.4+0516: discovery of a possible second relativistic tidal disruption flare? Astrophys. J. 753, 77 (2012).

    Article 

    Google Scholar
     

  • Brown, G. C. et al. Swift J1112.2-8238: a candidate relativistic tidal disruption flare. Mon. Not. R. Astron. Soc. 452, 4297–4306 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Pasham, D. R. et al. A multiwavelength study of the relativistic tidal disruption candidate Swift J2058.4+0516 at late times. Astrophys. J. 805, 68 (2015).

    Article 

    Google Scholar
     

  • Yuan, Q., Wang, Q. D., Lei, W.-H., Gao, H. & Zhang, B. Catching jetted tidal disruption events early in millimetre. Mon. Not. R. Astron. Soc. 461, 3375–3384 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Graham, M. J. et al. The Zwicky Transient Facility: science objectives. Publ. Astron. Soc. Pacif. 131, 078001 (2019).

    Article 

    Google Scholar
     

  • Sun, H., Zhang, B. & Li, Z. Extragalactic high-energy transients: event rate densities and luminosity functions. Astrophys. J. 812, 33 (2015).

    Article 

    Google Scholar
     

  • Andreoni, I. et al. Fast-transient searches in real time with ZTFReST: identification of three optically discovered gamma-ray burst afterglows and new constraints on the kilonova rate. Astrophys. J. 918, 63 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pasham, D., Gendreau, K., Arzoumanian, Z. & Cenko, B. ZTF22aaajecp/AT2022cmc: NICER X-ray detection. GCN Circ. 31601, 1 (2022).


    Google Scholar
     

  • Perley, D. A. ZTF22aaajecp/AT2022cmc: VLA radio detection. GCN Circ. 31592, 1 (2022).


    Google Scholar
     

  • Perley, D. A., Ho, A. Y. Q., Petitpas, G. & Keating, G. ZTF22aaajecb/AT2022cmc: submillimeter array detection. GCN Circ. 31627, 1 (2022).


    Google Scholar
     

  • Planck Collaboration. Planck 2018 results: VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020); erratum 652, C4 (2021).

    Article 

    Google Scholar
     

  • Tanvir, N. R. et al. ZTF22aaajecp/AT2022cmc: VLT/X-shooter redshift. GCN Circ. 31602, 1 (2022).


    Google Scholar
     

  • Gal-Yam, A. Observational and physical classification of supernovae. In Handbook of Supernovae (eds. Alsabti, A. W. & Murdin, P.) 195–237 (Springer, 2017).

  • Lu, W. & Bonnerot, C. Self-intersection of the fallback stream in tidal disruption events. Mon. Not. R. Astron. Soc. 492, 686–707 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Blandford, R. D. & Znajek, R. L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977).

    Article 

    Google Scholar
     

  • Pasham, D. et al. High-cadence NICER X-ray observations of AT2022cmc/ZTF22aaajecpc: flux variability and spectral evolution suggest it could be a relativistic tidal disruption event. Astron. Telegr. 15232, 1 (2022).


    Google Scholar
     

  • Yao, Y., Pasham, D. R. & Gendreau, K. C. NuSTAR observation of AT2022cmc, and joint spectral fitting with NICER. Astron. Telegr. 15230, 1 (2022).


    Google Scholar
     

  • Tchekhovskoy, A., Metzger, B. D., Giannios, D. & Kelley, L. Z. Swift J1644+57 gone MAD: the case for dynamically important magnetic flux threading the black hole in a jetted tidal disruption event. Mon. Not. R. Astron. Soc. 437, 2744–2760 (2014).

    Article 

    Google Scholar
     

  • Kumar, P. & Zhang, B. The physics of gamma-ray bursts & relativistic jets. Phys. Reports 561, 1–109 (2015).

    Article 

    Google Scholar
     

  • Dai, L., McKinney, J. C., Roth, N., Ramirez-Ruiz, E. & Miller, M. C. A unified model for tidal disruption events. Astrophys. J. Lett. 859, L20 (2018).

    Article 

    Google Scholar
     

  • Bonnerot, C., Lu, W. & Hopkins, P. F. First light from tidal disruption events. Mon. Not. R. Astron. Soc. 504, 4885–4905 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mattila, S. et al. A dust-enshrouded tidal disruption event with a resolved radio jet in a galaxy merger. Science 361, 482–485 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stone, N. C. et al. Rates of stellar tidal disruption. Space Sci. Rev. 216, 35 (2020).

    Article 

    Google Scholar
     

  • De Colle, F. & Lu, W. Jets from tidal disruption events. New Astron. Rev. 89, 101538 (2020).

    Article 

    Google Scholar
     

  • Alexander, K. D., van Velzen, S., Horesh, A. & Zauderer, B. A. Radio properties of tidal disruption events. Space Sci. Rev. 216, 81 (2020).

  • Hammerstein, E. et al. The final season reimagined: 30 tidal disruption events from the ZTF-I Survey. Preprint at https://arxiv.org/abs/2203.01461 (2022).

  • Aasi, J. et al. Advanced LIGO. Class. Quantum Grav. 32, 074001 (2015).

    Article 

    Google Scholar
     

  • Acernese, F. et al. Advanced Virgo. Class. Quantum Grav. 32, 024001 (2015).

    Article 

    Google Scholar
     

  • Aartsen, M. et al. The IceCube neutrino observatory: instrumentation and online systems. J. Instrum. 12, P03012–P03012 (2017).

    Article 

    Google Scholar
     

  • Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pacif. 131, 018002 (2019).

    Article 

    Google Scholar
     

  • Ivezić, Ž. et al. LSST: from science drivers to reference design and anticipated data products. Astrophys. J. 873, 111 (2019).

    Article 

    Google Scholar
     

  • Andreoni, I. & Coughlin, M. growth-astro/ztfrest: ztfrest. Zenodo https://doi.org/10.5281/zenodo.6827348 (2022).

  • Yao, Y. et al. ZTF early observations of type Ia supernovae. I. Properties of the 2018 sample. Astrophys. J. 886, 152 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Andreoni, I. ZTF Transient Discovery Report for 2022-02-14. Report No. 2022-397 (Transient Name Server Discovery Report, 2022); https://wis-tns.org/object/2022cmc/discovery-cert

  • Metzger, B. D. Kilonovae. Living Rev. Relativ. 23, 1 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coulter, D. A. et al. Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358, 1556–1558 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prentice, S. J. et al. The Cow: discovery of a luminous, hot, and rapidly evolving transient. Astrophys. J. Lett. 865, L3 (2018).

    Article 

    Google Scholar
     

  • Perley, D. A. et al. The fast, luminous ultraviolet transient AT2018cow: extreme supernova, or disruption of a star by an intermediate-mass black hole? Mon. Not. R. Astron. Soc. 484, 1031–1049 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Margutti, R. et al. An embedded X-ray source shines through the aspherical AT2018cow: revealing the inner workings of the most luminous fast-evolving optical transients. Astrophys. J. 872, 18 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Coppejans, D. L. et al. A mildly relativistic outflow from the energetic, fast-rising blue optical transient CSS161010 in a dwarf galaxy. Astrophys. J. Lett. 895, L23 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ho, A. Y. Q. et al. The Koala: a fast blue optical transient with luminous radio emission from a starburst dwarf galaxy at z = 0.27. Astrophys. J. 895, 49 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Perley, D. A. et al. Real-time discovery of AT2020xnd: a fast, luminous ultraviolet transient with minimal radioactive ejecta. Mon. Not. R. Astron. Soc. 508, 5138–5147 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yao, Y. et al. The X-ray and radio loud fast blue optical transient AT2020mrf: implications for an emerging class of engine-driven massive star explosions. Astrophys. J. 934, 104 (2022).

  • Ho, A. Y. Q. et al. AT2018cow: a luminous millimeter transient. Astrophys. J. 871, 73 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ho, A. Y. Q. et al. Luminous millimeter, radio, and X-ray emission from ZTF 20acigmel (AT 2020xnd). Astrophys. J. 932, 116 (2022).

  • Quataert, E. & Kasen, D. Swift 1644+57: the longest gamma-ray burst? Mon. Not. R. Astron. Soc. 419, L1–L5 (2012).

    Article 

    Google Scholar
     

  • Sheth, K. et al. Millimeter observations of GRB 030329: continued evidence for a two-component jet. Astrophys. J. 595, L33–L36 (2003).

    Article 

    Google Scholar
     

  • Laskar, T. et al. First ALMA light curve constrains refreshed reverse shocks and jet magnetization in GRB 161219B. Astrophys. J. 862, 94 (2018).

    Article 

    Google Scholar
     

  • Laskar, T. et al. A reverse shock in GRB 181201A. Astrophys. J. 884, 121 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Perley, D. A. et al. The afterglow of GRB 130427A from 1 to 1016 GHz. Astrophys. J. 781, 37 (2014).

    Article 

    Google Scholar
     

  • de Ugarte Postigo, A. et al. Pre-ALMA observations of GRBs in the mm/submm range. Astron. Astrophys. 538, A44 (2012).

    Article 

    Google Scholar
     

  • Kulkarni, S. R. et al. Radio emission from the unusual supernova 1998bw and its association with the γ-ray burst of 25 April 1998. Nature 395, 663–669 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Perley, D. A., Schulze, S. & de Ugarte Postigo, A. GRB 171205A: ALMA observations. GCN Circ. 22252, 1 (2017).


    Google Scholar
     

  • Weiler, K. W. et al. Long-term radio monitoring of SN 1993J. Astrophys. J. 671, 1959–1980 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Maeda, K. et al. The final months of massive star evolution from the circumstellar environment around SN Ic 2020oi. Astrophys. J. 918, 34 (2021).

  • Horesh, A. et al. An early and comprehensive millimetre and centimetre wave and X-ray study of SN 2011dh: a non-equipartition blast wave expanding into a massive stellar wind. Mon. Not. R. Astron. Soc. 436, 1258–1267 (2013).

    Article 

    Google Scholar
     

  • Corsi, A. et al. A multi-wavelength investigation of the radio-loud supernova PTF11qcj and its circumstellar environment. Astrophys. J. 782, 42 (2014).

    Article 

    Google Scholar
     

  • Soderberg, A. M. et al. A relativistic type Ibc supernova without a detected γ-ray burst. Nature 463, 513–515 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kann, D. A., Klose, S. & Zeh, A. Signatures of extragalactic dust in pre-Swift GRB afterglows. Astrophys. J. 641, 993–1009 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Kann, D. A. et al. The afterglows of Swift-era gamma-ray bursts. I. Comparing pre-Swift and Swift-era long/soft (type II) GRB optical afterglows. Astrophys. J. 720, 1513–1558 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Kann, D. A. et al. The afterglows of Swift-era gamma-ray bursts. II. Type I GRB versus type II GRB optical afterglows. Astrophys. J. 734, 96 (2011).

    Article 

    Google Scholar
     

  • Strubbe, L. E. & Quataert, E. Optical flares from the tidal disruption of stars by massive black holes. Mon. Not. R. Astron. Soc. 400, 2070–2084 (2009).

    Article 

    Google Scholar
     

  • Shiokawa, H., Krolik, J. H., Cheng, R. M., Piran, T. & Noble, S. C. General relativistic hydrodynamic simulation of accretion flow from a stellar tidal disruption. Astrophys. J. 804, 85 (2015).

    Article 

    Google Scholar
     

  • Hayasaki, K., Stone, N. & Loeb, A. Circularization of tidally disrupted stars around spinning supermassive black holes. Mon. Not. R. Astron. Soc. 461, 3760–3780 (2016).

    Article 

    Google Scholar
     

  • Bonnerot, C., Rossi, E. M., Lodato, G. & Price, D. J. Disc formation from tidal disruptions of stars on eccentric orbits by Schwarzschild black holes. Mon. Not. R. Astron. Soc. 455, 2253–2266 (2016).

    Article 

    Google Scholar
     

  • Metzger, B. D. & Stone, N. C. A bright year for tidal disruptions. Mon. Not. R. Astron. Soc. 461, 948–966 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Metzger, B. D., Giannios, D. & Mimica, P. Afterglow model for the radio emission from the jetted tidal disruption candidate Swift J1644+57. Mon. Not. R. Astron. Soc. 420, 3528–3537 (2012).


    Google Scholar
     

  • Tchekhovskoy, A., Narayan, R. & McKinney, J. C. Black hole spin and the radio loud/quiet dichotomy of active galactic nuclei. Astrophys. J. 711, 50–63 (2010).

    Article 

    Google Scholar
     

  • Law-Smith, J. A. P., Coulter, D. A., Guillochon, J., Mockler, B. & Ramirez-Ruiz, E. Stellar tidal disruption events with abundances and realistic structures (STARS): library of fallback rates. Astrophys. J. 905, 141 (2020).

    Article 

    Google Scholar
     

  • Jiang, Y.-F., Stone, J. M. & Davis, S. W. Super-Eddington accretion disks around supermassive black holes. Astrophys. J. 880, 67 (2019).

    Article 
    CAS 

    Google Scholar
     

  • de Ugarte Postigo, A. et al. The distribution of equivalent widths in long GRB afterglow spectra. Astron. Astrophys. 548, A11 (2012).

    Article 

    Google Scholar
     

  • Bloom, J. S., Kulkarni, S. R. & Djorgovski, S. G. The observed offset distribution of gamma-ray bursts from their host galaxies: a robust clue to the nature of the Progenitors. Astron. J. 123, 1111–1148 (2002).

    Article 

    Google Scholar
     

  • Blanchard, P. K., Berger, E. & Fong, W.-F. The offset and host light distributions of long gamma-ray bursts: a new view from HST observations of Swift bursts. Astrophys. J. 817, 144 (2016).

    Article 

    Google Scholar
     

  • Burrows, D. N. et al. The Swift X-Ray Telescope. Space Sci. Rev. 120, 165–195 (2005).

    Article 

    Google Scholar
     

  • Johnson, B. D., Leja, J., Conroy, C. & Speagle, J. S. Stellar population inference with Prospector. Astrophys. J. Supp. Ser. 254, 22 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Conroy, C., Gunn, J. E. & White, M. The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. Astrophys. J. 699, 486–506 (2009).

    Article 

    Google Scholar
     

  • Foreman-Mackey, D., Sick, J. & Johnson, B. python-fsps: Python bindings to FSPS (v0.1.1). Zenodo https://doi.org/10.5281/zenodo.12157 (2014).

  • Byler, N., Dalcanton, J. J., Conroy, C. & Johnson, B. D. Nebular continuum and line emission in stellar population synthesis models. Astrophys. J. 840, 44 (2017).

    Article 

    Google Scholar
     

  • Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pacif. 115, 763–795 (2003).

    Article 

    Google Scholar
     

  • Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    Article 

    Google Scholar
     

  • Schulze, S. et al. The Palomar Transient Factory Core-collapse Supernova Host-galaxy Sample. I. Host-galaxy distribution functions and environment dependence of core-collapse supernovae. Astrophys. J. Suppl. Ser. 255, 29 (2021).

    Article 
    CAS 

    Google Scholar
     

  • McConnell, N. J. & Ma, C.-P. Revisiting the scaling relations of black hole masses and host galaxy properties. Astrophys. J. 764, 184 (2013).

    Article 

    Google Scholar
     

  • Kesden, M. Tidal-disruption rate of stars by spinning supermassive black holes. Phys. Rev. D 85, 024037 (2012).

    Article 

    Google Scholar
     

  • Cummings, J. R. et al. GRB 110328A: Swift detection of a burst. GCN Circ. 11823, 1 (2011).


    Google Scholar
     

  • Benson, B. A. et al. SPT-3G: a next-generation cosmic microwave background polarization experiment on the South Pole telescope. In Proc. SPIE 9153: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII (eds Holland, W. S. & Zmuidzinas, J.) 91531P (SPIE, 2014).

  • Abazajian, K. et al. CMB-S4 science case, reference design, and project plan. Preprint at https://arxiv.org/abs/1907.04473 (2019).

  • Guns, S. et al. Detection of galactic and extragalactic millimeter-wavelength transient sources with SPT-3G. Astrophys. J. 916, 98 (2021).

    Article 

    Google Scholar
     

  • Eftekhari, T. et al. Extragalactic millimeter transients in the era of next-generation CMB surveys. Astrophys. J. 935, 16 (2022).

  • Feindt, U. et al. simsurvey: estimating transient discovery rates for the Zwicky Transient Facility. J. Cosmol. Astropart. Phys. 2019, 005 (2019).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Andreoni, I. et al. Constraining the kilonova rate with Zwicky Transient Facility searches independent of gravitational wave and short gamma-ray burst triggers. Astrophys. J. 904, 155 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Buchner, J. et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astron. Astrophys. 564, A125 (2014).

    Article 

    Google Scholar
     

  • Feroz, F., Hobson, M. P. & Bridges, M. Multinest: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601–1614 (2009).

    Article 

    Google Scholar
     

  • Feroz, F. & Hobson, M. P. Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis. Mon. Not. Roy. Astron. Soc. 384, 449 (2008).

    Article 

    Google Scholar
     

  • Bellm, E. C. et al. The Zwicky Transient Facility: surveys and scheduler. Publ. Astron. Soc. Pacif. 131, 068003 (2019).

    Article 

    Google Scholar
     

  • Dekany, R. et al. The Zwicky Transient Facility: observing system. Publ. Astron. Soc. Pacif. 132, 038001 (2020).

    Article 

    Google Scholar
     

  • Masci, F. J. et al. The Zwicky Transient Facility: data processing, products, and archive. Publ. Astron. Soc. Pacif. 131, 018003 (2019).

    Article 

    Google Scholar
     

  • Steele, I. A. et al. The Liverpool Telescope: performance and first results. In Proc. SPIE 5489: Ground-based Telescopes (ed. Oschmann, J. M. Jr.) 679-692 (SPIE, 2004).

  • Perley, R. A., Chandler, C. J., Butler, B. J. & Wrobel, J. M. The Expanded Very Large Array: a new telescope for new science. Astrophys. J. Lett. 739, L1 (2011).

    Article 

    Google Scholar
     

  • Holland, W. S. et al. SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope. Mon. Not. R. Astron. Soc. 430, 2513–2533 (2013).

    Article 

    Google Scholar
     

  • Currie, M. J. et al. Starlink Software in 2013. In Astronomical Data Analysis Software and Systems XXIII (eds Manset, N. & Forshay, P.) 391–394 (Astronomical Society of the Pacific, 2014).

  • Chapin, E. L. et al. SCUBA-2: iterative map-making with the Sub-Millimetre User Reduction Facility. Mon. Not. R. Astron. Soc. 430, 2545–2573 (2013).

    Article 

    Google Scholar
     

  • Mairs, S. et al. A decade of SCUBA-2: a comprehensive guide to calibrating 450 μm and 850 μm continuum data at the JCMT. Astron. J. 162, 191 (2021).

    Article 

    Google Scholar
     

  • Smith, I. A., Perley, D. A. & Tanvir, N. R. ZTF22aaajecp/AT2022cmc: JCMT SCUBA-2 sub-mm observations. GCN Circ. 31654 (2022).


    Google Scholar
     

  • McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. In Astronomical Data Analysis Software and Systems XVI (eds Shaw, R. A. et al.) 127 (Astronomical Society of the Pacific, 2007).

  • Maity, B. & Chandra, P. 1000 days of the lowest-frequency emission from the low-luminosity GRB 171205A. Astrophys. J. 907, 60 (2021).

    Article 
    CAS 

    Google Scholar
     

  • McCully, C. & Tewes, M. Astro-SCRAPPY: Speedy Cosmic Ray Annihilation Package in Python. Github https://github.com/astropy/astroscrappy (2019).

  • Bertin, E. SWarp: resampling and co-adding FITS images together. Astrophys. Source Code Library http://ascl.net/1010.068 (2010).

  • Chambers, K. C. et al. The Pan-STARRS1 Surveys. Preprint at https://arxiv.org/abs/1612.05560 (2016).

  • Flaugher, B. et al. The Dark Energy Camera. Astron. J. 150, 150 (2015).

    Article 

    Google Scholar
     

  • Valdes, F., Gruendl, R. & DES Project. The DECam Community Pipeline. In Astronomical Data Analysis Software and Systems XXIII (eds Manset, N. & Forshay, P.) 379–382 (Astronomical Society of the Pacific, 2014).

  • Rest, A. et al. Cosmological constraints from measurements of type Ia supernovae discovered during the first 1.5 yr of the Pan-STARRS1 Survey. Astrophys. J. 795, 44 (2014).

    Article 

    Google Scholar
     

  • Xavier Prochaska, J. et al. pypeit/Pypeit: release 1.0.0. Zenodo https://zenodo.org/record/3743493 (2020).

  • Cenko, S. B. et al. The Automated Palomar 60 Inch Telescope. Publ. Astron. Soc. Pacif. 118, 1396–1406 (2006).

    Article 

    Google Scholar
     

  • Blagorodnova, N. et al. The SED Machine: a robotic spectrograph for fast transient classification. Publ. Astron. Soc. Pacif. 130, 035003 (2018).

    Article 

    Google Scholar
     

  • Rigault, M. et al. Fully automated integral field spectrograph pipeline for the SEDMachine: pysedm. Astron. Astrophys. 627, A115 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fremling, C. et al. PTF12os and iPTF13bvn. Astron. Astrophys. 593, A68 (2016).

    Article 

    Google Scholar
     

  • Ahn, C. P. et al. The Tenth Data Release of the Sloan Digital Sky Survey: first spectroscopic data from the SDSS-III Apache Point Observatory Galactic Evolution Experiment. Astrophys. J. Suppl. Ser. 211, 17 (2014).

    Article 

    Google Scholar
     

  • Tonry, J. L. et al. ATLAS: a high-cadence all-sky survey system. Publ. Astron. Soc. Pacif. 130, 064505 (2018).

    Article 

    Google Scholar
     

  • Smith, K. W. et al. Design and operation of the ATLAS transient science server. Publ. Astron. Soc. Pacif. 132, 085002 (2020).

    Article 

    Google Scholar
     

  • Vernet, J. et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope. Astron. Astrophys. 536, A105 (2011).

    Article 

    Google Scholar
     

  • Modigliani, A. et al. The X-shooter pipeline. In Proc. SPIE 7737: Observatory Operations: Strategies, Processes, and Systems III (eds Silva, D. R. et al.) 773728 (SPIE, 2010).

  • Selsing, J. et al. The X-shooter GRB afterglow legacy sample (XS-GRB). Astron. Astrophys. 623, A92 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Garzón, F. et al. EMIR: the GTC NIR multi-object imager-spectrograph. In Proc. SPIE 6269: Ground-based and Airborne Instrumentation for Astronomy (eds McLean, I. S. & Iye, M.) 626918 (SPIE, 2006).

  • Kann, D. A. et al. ZTF22aaajecp/AT 2022cmc: CAHA 2.2m/CAFOS detection, luminous transient. GCN Circ. 31626, 1 (2022).


    Google Scholar
     

  • Prochaska, J. et al. PypeIt: the Python spectroscopic data reduction pipeline. J. Open Source Softw. 5, 2308 (2020).

    Article 

    Google Scholar
     

  • Lundquist, M. J., Alvarez, C. A. & O’Meara, J. ZTF22aaajecp/AT2022cmc: Keck DEIMOS redshift. GCN Circ. 31612, 1 (2022).


    Google Scholar
     

  • Perley, D. A. Fully automated reduction of longslit spectroscopy with the Low Resolution Imaging Spectrometer at the Keck Observatory. Publ. Astron. Soc. Pacif. 131, 084503 (2019).

    Article 

    Google Scholar
     

  • Labrie, K., Cardenes, R., Anderson, K., Simpson, C. & Turner, J. E. H. DRAGONS: one pipeline to rule them all. In Proc. SPIE 522: Astronomical Data Analysis Software and Systems XXVII (eds Ballester, P. et al.) 583–586 (SPIE, 2020).

  • Ahumada, T. et al. ZTF22aaajecp/AT2022cmc: GMOS-N spectroscopy. GCN Circ. 31595, 1 (2022).


    Google Scholar
     

  • Roming, P. W. A. et al. The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. 120, 95–142 (2005).

    Article 

    Google Scholar
     

  • Cash, W. Parameter estimation in astronomy through application of the likelihood ratio. Astrophys. J. 228, 939–947 (1979).

    Article 

    Google Scholar
     

  • Gendreau, K. C. et al. The Neutron Star Interior Composition Explorer (NICER): design and development. In Proc. SPIE 9905: Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray (eds den Herder, J.-W. A. et al.) 99051H (SPIE, 2016).

  • Pasham, D. R. et al. The birth of a relativistic jet following the disruption of a star by a cosmological black hole. Nat. Astron. https://doi.org/10.1038/s41550-022-01820-x (2022).

  • Remillard, R. A. et al. An empirical background model for the NICER X-Ray Timing Instrument. Astron. J. 163, 130 (2022).

    Article 
    CAS 

    Google Scholar
     

  • HI4PI Collaboration. HI4PI: a full-sky H i survey based on EBHIS and GASS. Astron. Astrophys. 594, A116 (2016).

    Article 

    Google Scholar
     

  • Wiersema, K. et al. Polarimetry of the transient relativistic jet of GRB 110328/Swift J164449.3+573451. Mon. Not. R. Astron. Soc. 421, 1942–1948 (2012).

    Article 

    Google Scholar
     

  • Planck Collaboration. Planck 2013 results. XI. All-sky model of thermal dust emission. Astron. Astrophys. 571, A11 (2014).

    Article 

    Google Scholar
     

  • Eftekhari, T., Berger, E., Zauderer, B. A., Margutti, R. & Alexander, K. D. Radio monitoring of the tidal disruption event Swift J164449.3+573451. III. Late-time jet energetics and a deviation from equipartition. Astrophys. J. 854, 86 (2018).

    Article 

    Google Scholar
     

  • Fremling, C. et al. The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic classification and the redshift completeness of local galaxy catalogs. Astrophys. J. 895, 32 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Perley, D. A. et al. The Zwicky Transient Facility Bright Transient Survey. II. A public statistical sample for exploring supernova demographics. Astrophys. J. 904, 35 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ho, A. Y. Q. et al. The photometric and spectroscopic evolution of rapidly evolving extragalactic transients in ZTF. Preprint at https://arxiv.org/abs/2105.08811 (2021).

  • Ho, A. Y. Q. et al. Cosmological fast optical transients with the Zwicky Transient Facility: a search for dirty fireballs. Astrophys. J. 938, 85 (2022).

  • Cenko, S. B. et al. iPTF14yb: the first discovery of a gamma-ray burst afterglow independent of a high-energy trigger. Astrophys. J. Lett. 803, L24 (2015).

    Article 

    Google Scholar
     

  • Cowperthwaite, P. S. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. II. UV, optical, and near-infrared light curves and comparison to kilonova models. Astrophys. J. Lett. 848, L17 (2017).

    Article 

    Google Scholar
     

  • Kasliwal, M. M. et al. Illuminating gravitational waves: a concordant picture of photons from a neutron star merger. Science 358, 1559–1565 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Drout, M. R. et al. Light curves of the neutron star merger GW170817/SSS17a: implications for r-process nucleosynthesis. Science 358, 1570–1574 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Villar, V. A., Berger, E., Metzger, B. D. & Guillochon, J. Theoretical models of optical transients. I. A broad exploration of the duration–luminosity phase space. Astrophys. J. 849, 70 (2017).

    Article 

    Google Scholar
     

  • Source link

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button