Amazing Journey Into A Black Hole

Have a Journey Into A Black Hole!
Sagittarius A* (pronounced “Sagittarius A-Star”, abbreviated Sgr A*) is a bright and very compact astronomical radio source at the center of the Milky Way, near the border of the constellations Sagittarius and Scorpius about 5.6° south of the ecliptic.It is the location of a supermassive black hole, similar to those generally accepted to be at the centers of most if not all spiral and elliptical galaxies. Karl Jansky, considered a father of radio astronomy, discovered in August 1931 that a radio signal was coming from a location at the center of the Milky Way, in the direction of the constellation of Sagittarius; the radio source later became known as Sagittarius A. Later observations showed that Sagittarius A actually consists of several overlapping sub-components; a bright and very compact component Sgr A* was discovered on February 13 and 15, 1974, by astronomers Bruce Balick and Robert Brown using the baseline interferometer of the National Radio Astronomy Observatory. The name Sgr A* was coined by Brown in a 1982 paper because the radio source was “exciting”, and excited states of atoms are denoted with asterisks. First noticed as something unusual in images of the center of the Milky Way in 2002, the gas cloud G2, which has a mass about three times that of Earth, was confirmed to be likely on a course taking it into the accretion zone of Sgr A* in a paper published in Nature in 2012. Predictions of its orbit suggested it would make its closest approach to the black hole (a perinigricon) in early 2014, when the cloud was at a distance of just over 3,000 times the radius of the event horizon (or ≈260 AU, 36 light-hours) from the black hole. G2 has been observed to be disrupting since 2009, and was predicted by some to be completely destroyed by the encounter, which could have led to a significant brightening of X-ray and other emission from the black hole. Other astronomers suggested the gas cloud could be hiding a dim star, or a binary star merger product, which would hold it together against the tidal forces of Sgr A*, allowing the ensemble to pass by without any effect.[54] In addition to the tidal effects on the cloud itself, it was proposed in May 2013 that, prior to its perinigricon, G2 might experience multiple close encounters with members of the black-hole and neutron-star populations thought to orbit near the Galactic Center, offering some insight to the region surrounding the supermassive black hole at the center of the Milky Way.

The average rate of accretion onto Sgr A* is unusually small for a black hole of its mass and is only detectable because it is so close to Earth. It was thought that the passage of G2 in 2013 might offer astronomers the chance to learn much more about how material accretes onto supermassive black holes. Several astronomical facilities observed this closest approach, with observations confirmed with Chandra, XMM, EVLA, INTEGRAL, Swift, Fermi and requested at VLT and Keck.

Simulations of the passage were made before it happened by groups at ESO and Lawrence Livermore National Laboratory (LLNL).

As the cloud approached the black hole, Dr. Daryl Haggard said “It’s exciting to have something that feels more like an experiment”, and hoped that the interaction would produce effects that would provide new information and insights.

Nothing was observed during and after the closest approach of the cloud to the black hole, which was described as a lack of “fireworks” and a “flop”. Astronomers from the UCLA Galactic Center Group published observations obtained on March 19 and 20, 2014, concluding that G2 was still intact (in contrast to predictions for a simple gas cloud hypothesis) and that the cloud was likely to have a central star.

An analysis published on July 21, 2014, based on observations by the ESO’s Very Large Telescope in Chile, concluded alternatively that the cloud, rather than being isolated, might be a dense clump within a continuous but thinner stream of matter, and would act as a constant breeze on the disk of matter orbiting the black hole, rather than sudden gusts that would have caused high brightness as they hit, as originally expected. Supporting this hypothesis, G1, a cloud that passed near the black hole 13 years ago, had an orbit almost identical to G2, consistent with both clouds, and a gas tail thought to be trailing G2, all being denser clumps within a large single gas stream.

Professor Andrea Ghez et al. suggested in 2014 that G2 is not a gas cloud but rather a pair of binary stars that had been orbiting the black hole in tandem and merged into an extremely large star.

Sgr A* is monitored on a daily basis by the X-ray telescope of the Swift satellite.


Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button