Blackholes

A WC/WO star exploding within an expanding carbon–oxygen–neon nebula


  • 1.

    Crowther, P. A. Physical properties of Wolf–Rayet stars. Annu. Rev. Astron. Astrophys. 45, 177–219 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Smith, N., Li, W., Filippenko, A. V. & Chornock, R. Observed fractions of core-collapse supernova types and initial masses of their single and binary progenitor stars. Mon. Not. R. Astron. Soc. 412, 1522–1538 (2011).

    ADS 

    Google Scholar
     

  • 3.

    Taddia, F. et al. The Carnegie Supernova Project I: analysis of stripped-envelope supernova light curves. Astron. Astrophys. 609, A136 (2018).


    Google Scholar
     

  • 4.

    Dessart, L. et al. Core-collapse explosions of Wolf–Rayet stars and the connection to type IIb/Ib/Ic supernovae. Mon. Not. R. Astron. Soc. 414, 2985–3005 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Drout, M. R. et al. Rapidly evolving and luminous transients from Pan-STARRS1. Astrophys. J. 794, 23 (2014).

    ADS 

    Google Scholar
     

  • 6.

    Arcavi, I. et al. Rapidly rising transients in the supernova–superluminous supernova gap. Astrophys. J. 819, 35 (2016).

    ADS 

    Google Scholar
     

  • 7.

    Pursiainen, M. et al. Rapidly evolving transients in the Dark Energy Survey. Mon. Not. R. Astron. Soc. 481, 894–971 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Perley, D. A. et al. The Zwicky Transient Facility Bright Transient Survey. II. A public statistical sample for exploring supernova demographics. Astrophys. J. 904, 35 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2019).

    ADS 

    Google Scholar
     

  • 10.

    Gal-Yam, A. et al. Real-time detection and rapid multiwavelength follow-up observations of a highly subluminous type II-P supernova from the Palomar Transient Factory Survey. Astrophys. J. 736, 159 (2011).

    ADS 

    Google Scholar
     

  • 11.

    Kool, E. C. et al. SN 2020bqj: a type Ibn supernova with a long-lasting peak plateau. Astron. Astrophys. 652, A136 (2021).

    CAS 

    Google Scholar
     

  • 12.

    Arnett, W. D. Type I supernovae. I—Analytic solutions for the early part of the light curve. Astrophys. J. 253, 785–797 (1982).

    ADS 
    CAS 

    Google Scholar
     

  • 13.

    Drout, M. R. et al. The first systematic study of type Ibc supernova multi-band light curves. Astrophys. J. 741, 97 (2011); erratum Astrophys. J. 753, 180 (2012).

    ADS 

    Google Scholar
     

  • 14.

    Prentice, S. J. et al. Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors? Mon. Not. R. Astron. Soc. 485, 1559–1578 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 15.

    Chatzopoulos, E., Wheeler, J. C. & Vinko, J. Generalized semi-analytical models of supernova light curves. Astrophys. J. 746, 121 (2012).

    ADS 

    Google Scholar
     

  • 16.

    Rabinak, I. & Waxman, E. The early UV/optical emission from core-collapse supernovae. Astrophys. J. 728, 63 (2011).

    ADS 

    Google Scholar
     

  • 17.

    Janka, H.-T. Explosion mechanisms of core-collapse supernovae. Annu. Rev. Nucl. Part. Sci. 62, 407–451 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Filippenko, A. V. Optical spectra of supernovae. Annu. Rev. Astron. Astrophys. 35, 309–355 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 19.

    Fremling, C. et al. The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic classification and the redshift completeness of local galaxy catalogs. Astrophys. J. 895, 32 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 20.

    Foley, R. J. et al. SN 2006jc: a Wolf–Rayet star exploding in a dense He-rich circumstellar medium. Astrophys. J. 657, L105 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Pastorello, A. et al. Massive stars exploding in a He-rich circumstellar medium—I. Type Ibn (SN 2006jc-like) events. Mon. Not. R. Astron. Soc. 389, 113–130 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 22.

    Karamehmetoglu, E. et al. OGLE-2014-SN-131: a long-rising type Ibn supernova from a massive progenitor. Astron. Astrophys. 602, A93 (2017).


    Google Scholar
     

  • 23.

    Gal-Yam, A. Observational and physical classification of supernovae. In Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 195–237 (2017); https://doi.org/10.1007/978-3-319-21846-5_35.

  • 24.

    Hosseinzadeh, G. et al. Type Ibn supernovae show photometric homogeneity and spectral diversity at maximum light. Astrophys. J. 836, 158 (2017).

    ADS 

    Google Scholar
     

  • 25.

    Pastorello, A. et al. Massive stars exploding in a He-rich circumstellar medium—IX. SN 2014av, and characterization of type Ibn SNe. Mon. Not. R. Astron. Soc. 456, 853–869 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Perley, D. et al. ZTF/LT discovery of a fast, luminous blue transient with narrow carbon features. Transient Name Server AstroNote 2021-62 (2021); https://www.wis-tns.org/astronotes/astronote/2021-62.

  • 27.

    Pastorello, A. et al. adH0cc spectroscopic classification of SN 2021ckj, an unusual “Type Icn” supernova. Transient Name Server AstroNote 2021-71 (2021); https://www.wis-tns.org/astronotes/astronote/2021-71.

  • 28.

    Gal-Yam, A. et al. Introducing a new supernova classification type: SN Icn. Transient Name Server AstroNote 2021-76 (2021); https://www.wis-tns.org/astronotes/astronote/2021-76.

  • 29.

    Gal-Yam, A. A simple analysis of type I superluminous supernova peak spectra: composition, expansion velocities, and dynamics. Astrophys. J. 882, 102 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Sharon, A. & Kushnir, D. The γ-ray deposition histories of core-collapse supernovae. Mon. Not. R. Astron. Soc. 496, 4517–4545 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 31.

    Graham, M. J. et al. The Zwicky Transient Facility: science objectives. Publ. Astron. Soc. Pac. 131, 078001 (2019).

    ADS 

    Google Scholar
     

  • 32.

    Yaron, O., Gal-Yam, A., Ofek, E. & Sass, A. The revised treatment of object coordinates (astrometric accuracies) is now active on the TNS. Transient Name Server AstroNote 2019-37 (2019); https://www.wis-tns.org/astronotes/astronote/2019-37.

  • 33.

    Dekany, R. et al. The Zwicky Transient Facility: observing system. Publ. Astron. Soc. Pac. 132, 038001 (2020).

    ADS 

    Google Scholar
     

  • 34.

    Masci, F. J. et al. The Zwicky Transient Facility: data processing, products, and archive. Publ. Astron. Soc. Pac. 131, 018003 (2019).

    ADS 

    Google Scholar
     

  • 35.

    Zackay, B., Ofek, E. O. & Gal-Yam, A. Proper image subtraction—optimal transient detection, photometry, and hypothesis testing. Astrophys. J. 830, 27 (2016).

    ADS 

    Google Scholar
     

  • 36.

    Gal-Yam, A. Infant supernovae from ZTF. In 233rd American Astronomical Society Meeting 131.06 (2019).

  • 37.

    Kasliwal, M. M. et al. The GROWTH Marshal: a dynamic science portal for time-domain astronomy. Publ. Astron. Soc. Pac. 131, 038003 (2019).

    ADS 

    Google Scholar
     

  • 38.

    Bruch, R. et al. ZTF transient discovery report for 2019-06-10. Transient Name Server Discovery Report 2019-973 (2019); https://www.wis-tns.org/ads/TNSTR-2019-973.

  • 39.

    Strotjohann, N. L. et al. Bright, months-long stellar outbursts announce the explosion of interaction-powered supernovae. Astrophys. J. 907, 99 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    Cenko, S. B. et al. The Automated Palomar 60 Inch Telescope. Publ. Astron. Soc. Pac. 118, 1396–1406 (2006).

    ADS 

    Google Scholar
     

  • 41.

    Blagorodnova, N. et al. The SED Machine: a robotic spectrograph for fast transient classification. Publ. Astron. Soc. Pac. 130, 035003 (2018).

    ADS 

    Google Scholar
     

  • 42.

    Fremling, C. et al. PTF12os and iPTF13bvn. Two stripped-envelope supernovae from low-mass progenitors in NGC 5806. Astron. Astrophys. 593, A68 (2016).


    Google Scholar
     

  • 43.

    Schulze, S. et al. Cosmic evolution and metal aversion in superluminous supernova host galaxies. Mon. Not. R. Astron. Soc. 473, 1258–1285 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Aihara, H. et al. The eighth data release of the Sloan Digital Sky Survey: first data from SDSS-III. Astrophys. J. Suppl. Ser. 193, 29 (2011).

    ADS 

    Google Scholar
     

  • 45.

    Roming, P. W. A. et al. The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. 120, 95–142 (2005).

    ADS 

    Google Scholar
     

  • 46.

    Gehrels, N. et al. The Swift gamma-ray burst mission. Astrophys. J. 611, 1005 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 47.

    Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    ADS 

    Google Scholar
     

  • 48.

    Komatsu, E. et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 192, 18 (2011).

    ADS 

    Google Scholar
     

  • 49.

    Pastorello, A. et al. A giant outburst two years before the core-collapse of a massive star. Nature 447, 829–832 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Ofek, E. O. et al. An outburst from a massive star 40 days before a supernova explosion. Nature 494, 65–67 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Ofek, E. O. et al. Precursors prior to type IIn supernova explosions are common: precursor rates, properties, and correlations. Astrophys. J. 789, 104 (2014).

    ADS 

    Google Scholar
     

  • 52.

    Yaron, O. & Gal-Yam, A. WISeREP – an interactive supernova data repository. Publ. Astron. Soc. Pac. 124, 668–681 (2012).

    ADS 

    Google Scholar
     

  • 53.

    Ben-Ami, S. et al. The SED Machine: a dedicated transient IFU spectrograph. In Proc. SPIE 8446: Ground-based and Airborne Instrumentation for Astronomy IV (eds McLean, I. S. et al.) 844686 (SPIE, 2012).

  • 54.

    Rigault, M. et al. Fully automated integral field spectrograph pipeline for the SEDMachine: pysedm. Astron. Astrophys. 627, A115 (2019).

    CAS 

    Google Scholar
     

  • 55.

    Hook, I. M. et al. The Gemini–North Multi-Object Spectrograph: performance in imaging, long-slit, and multi-object spectroscopic modes. Publ. Astron. Soc. Pac. 116, 425–440 (2004).

    ADS 

    Google Scholar
     

  • 56.

    Piascik, A. S. et al. SPRAT: Spectrograph for the Rapid Acquisition of Transients. Proc. SPIE 9147: Ground-based and Airborne Instrumentation for Astronomy V (eds Ramsay, S. K.) 91478H (2014).

  • 57.

    Steele, I. A. et al. The Liverpool Telescope: performance and first results. Proc. SPIE 5489: Ground-based Telescopes (ed. Oschmann Jr, J. M.) 679–692 (2004).

  • 58.

    Chonis, T. S. et al. LRS2: design, assembly, testing, and commissioning of the second-generation low-resolution spectrograph for the Hobby–Eberly Telescope. Proc. SPIE 9908: Ground-based and Airborne Instrumentation for Astronomy VI (eds Evans, C. J. et al.) 99084C (2016).

  • 59.

    Ramsey, L. W. et al. Early performance and present status of the Hobby–Eberly Telescope. Proc. SPIE 3352: Advanced Technology Optical/IR Telescopes VI (ed. Stepp, L. M.) 34–51 (1998).

  • 60.

    Benn, C., Dee, K. & Agócs, T. ACAM: a new imager/spectrograph for the William Herschel Telescope. Proc. SPIE 7104: Ground-based and Airborne Instrumentation for Astronomy II (eds McLean, I. S. & Casali, M. M.) 70146X (2008).

  • 61.

    Levine, S. E. et al. Status and performance of the Discovery Channel Telescope during commissioning. Proc. SPIE 8444: Ground-based and Airborne Telescopes IV (eds Stepp, L. M. et al.) 844419 (2012).

  • 62.

    Levine, S. E., & DeGroff, W. T. Status and imaging performance of Lowell Observatory’s Discovery Channel Telescope in its first year of full science operations. Proc. SPIE 9906: Ground-based and Airborne Telescopes VI (eds Hall, H. J. et al.) 990621 (2016).

  • 63.

    Oke, J. B. & Gunn, J. E. An efficient low- and moderate-resolution spectrograph for the Hale Telescope. Publ. Astron. Soc. Pac. 94, 586–594 (1982).

    ADS 
    CAS 

    Google Scholar
     

  • 64.

    Bellm, E. C. et al. pyraf-dbsp: reduction pipeline for the Palomar Double Beam Spectrograph. Astrophysics Source Code Library https://www.ascl.net/1602.002 (2016).

  • 65.

    Oke, J. B. et al. The Keck Low-Resolution Imaging Spectrometer. Publ. Astron. Soc. Pac. 107, 375–385 (1995).

    ADS 

    Google Scholar
     

  • 66.

    Perley, D. A. Fully automated reduction of longslit spectroscopy with the Low Resolution Imaging Spectrometer at the Keck Observatory. Publ. Astron. Soc. Pac. 131, 084503 (2019).

    ADS 

    Google Scholar
     

  • 67.

    Sander, A., Hamann, W.-R. & Todt, H. The Galactic WC stars: stellar parameters from spectral analyses indicate a new evolutionary sequence. Astron. Astrophys. 540, A144 (2012).


    Google Scholar
     

  • 68.

    Gal-Yam, A. et al. A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind. Nature 509, 471–474 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Khazov, D. et al. Flash spectroscopy: emission lines from the ionized circumstellar material around <10-day-old type II supernovae. Astrophys. J. 818, 3 (2016).

    ADS 

    Google Scholar
     

  • 70.

    Bruch, R. J. et al. A large fraction of hydrogen-rich supernova progenitors experience elevated mass loss shortly prior to explosion. Astrophys. J. 912, 46 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 71.

    Yaron, O. et al. Confined dense circumstellar material surrounding a regular type II supernova. Nat. Phys. 13, 510–517 (2017).

    CAS 

    Google Scholar
     

  • 72.

    Gal-Yam, A. The most luminous supernovae. Annu. Rev. Astron. Astrophys. 57, 305–333 (2019).

    ADS 

    Google Scholar
     

  • 73.

    Valenti, S. et al. The carbon-rich type Ic SN 2007gr: the photospheric phase. Astrophys. J. 673, L155–L158 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 74.

    Branch, D. et al. Comparative direct analysis of type Ia supernova spectra. I. SN 1994D. Publ. Astron. Soc. Pac. 117, 545–552 (2005).

    ADS 

    Google Scholar
     

  • 75.

    Karamehmetoglu, E. et al. The luminous and rapidly evolving SN 2018bcc: clues toward the origin of type Ibn SNe from the Zwicky Transient Facility. Astron. Astrophys. 649, A163 (2021).

    CAS 

    Google Scholar
     

  • 76.

    Burrows, D. N. et al. The Swift X-Ray Telescope. Space Sci. Rev. 120, 165–195 (2005).

    ADS 

    Google Scholar
     

  • 77.

    Evans, P. A. et al. An online repository of Swift/XRT light curves of γ-ray bursts. Astron. Astrophys. 469, 379–385 (2007).

    ADS 

    Google Scholar
     

  • 78.

    Evans, P. A. et al. Methods and results of an automatic analysis of a complete sample of Swift–XRT observations of GRBs. Mon. Not. R. Astron. Soc. 397, 1177–1201 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 79.

    HI4PI Collaboration. HI4PI: A full-sky H i survey based on EBHIS and GASS. Astron. Astrophys. 594, A116 (2016).


    Google Scholar
     

  • 80.

    Ho, A. Y. Q. et al. The Koala: a fast blue optical transient with luminous radio emission from a starburst dwarf galaxy at z = 0.27. Astrophys. J. 895, 49 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 81.

    Coppejans, D. L. et al. A mildly relativistic outflow from the energetic, fast-rising blue optical transient CSS161010 in a dwarf galaxy. Astrophys. J. 895, L23 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 82.

    De, K. et al. A hot and fast ultra-stripped supernova that likely formed a compact neutron star binary. Science 362, 201–206 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 83.

    Yao, Y. et al. SN2019dge: a helium-rich ultra-stripped envelope supernova. Astrophys. J. 900, 46 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 84.

    Ho, A. Y. Q. et al. Evidence for late-stage eruptive mass loss in the progenitor to SN2018gep, a broad-lined Ic supernova: pre-explosion emission and a rapidly rising luminous transient. Astrophys. J. 887, 169 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 85.

    Perley, D. A. et al. Real-time discovery of AT2020xnd: a fast, luminous ultraviolet transient with minimal radioactive ejecta. Mon. Not. R. Astron. Soc. 887, 5138–5147(2021).

    ADS 

    Google Scholar
     

  • 86.

    Ofek, E. O. et al. SN 2010jl: optical to hard X-ray observations reveal an explosion embedded in a ten solar mass cocoon. Astrophys. J. 781, 42 (2014).

    ADS 

    Google Scholar
     

  • 87.

    Chandra, P., Chevalier, R. A., Chugai, N., Fransson, C. & Soderberg, A. M. X-Ray and radio emission from type IIn supernova SN 2010jl. Astrophys. J. 810, 32 (2015).

    ADS 

    Google Scholar
     

  • 88.

    Immler, S. et al. Swift and Chandra detections of supernova 2006jc: evidence for interaction of the supernova shock with a circumstellar shell. Astrophys. J. 674, L85–L88 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 89.

    Martin, C. & GALEX Team. The Galaxy Evolution Explorer – early data. In Symposium – International Astronomical Union Vol. 216: Maps of the Cosmos (eds Colless, M. et al.) 221–229 (2005).

  • 90.

    Ahn, C. P. et al. The ninth data release of the Sloan Digital Sky Survey: first spectroscopic data from the SDSS-III Baryon Oscillation Spectroscopic Survey. Astrophys. J. Suppl. Ser. 203, 21 (2012).

    ADS 

    Google Scholar
     

  • 91.

    Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).

    ADS 

    Google Scholar
     

  • 92.

    Lang, D. unWISE: unblurred coadds of the WISE imaging. Astron. J 147, 108 (2014).

    ADS 

    Google Scholar
     

  • 93.

    Mainzer, A. et al. Initial performance of the NEOWISE reactivation mission. Astrophys. J. 792, 30 (2014).

    ADS 

    Google Scholar
     

  • 94.

    Meisner, A. M. et al. Deep full-sky coadds from three years of WISE and NEOWISE observations. Astron. J. 154, 161 (2017).

    ADS 

    Google Scholar
     

  • 95.

    Breeveld, A. A. et al. An updated ultraviolet calibration for the Swift/UVOT. In AIP Conf. Proc. Vol 1358: Gamma Ray Bursts 2010 (eds McEnery, J. E. et al.) 373–376 (2011).

  • 96.

    Wright, A. H. et al. Galaxy and Mass Assembly: accurate panchromatic photometry from optical priors using LAMBDAR. Mon. Not. R. Astron. Soc. 460, 765–801 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 97.

    Schulze, S. et al. The Palomar Transient Factory core-collapse supernova host-galaxy sample. I. Host-galaxy distribution functions and environment dependence of core-collapse supernovae. Astrophys. J. Supp. Ser. 255, 29 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 98.

    Leja, J., Johnson, B. D., Conroy, C., van Dokkum, P. G. & Byler, N. Deriving physical properties from broadband photometry with Prospector: description of the model and a demonstration of its accuracy using 129 galaxies in the local Universe. Astrophys. J. 837, 170 (2017).

    ADS 

    Google Scholar
     

  • 99.

    Conroy, C., Gunn, J. E. & White, M. The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. Astrophys. J. 699, 486–506 (2009).

    ADS 

    Google Scholar
     

  • 100.

    Foreman-Mackey, D. et al. python-fsps: Python bindings to fsps (V0.1.1). Zenodohttps://zenodo.org/record/12157#.YbjtiUaxXdc (2014).

  • 101.

    Byler, N. et al. Nebular continuum and line emission in stellar population synthesis models. Astrophys. J. 840, 44 (2017).

    ADS 

    Google Scholar
     

  • 102.

    Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).

    ADS 

    Google Scholar
     

  • 103.

    Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    ADS 

    Google Scholar
     

  • 104.

    Speagle, J. S. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).

    ADS 

    Google Scholar
     

  • 105.

    Marino, R. A. et al. The O3N2 and N2 abundance indicators revisited: improved calibrations based on CALIFA and Te-based literature data. Astron. Astrophys. 559, A114 (2013).


    Google Scholar
     

  • 106.

    Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 107.

    Lunnan, R. et al. Hydrogen-poor superluminous supernovae and long-duration gamma-ray bursts have similar host galaxies. Astrophys. J. 787, 138–156 (2014).

    ADS 

    Google Scholar
     

  • 108.

    Leloudas, G. et al. Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies. Mon. Not. R. Astron. Soc. 449, 917–932 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 109.

    Perley, D. A. et al. Host-galaxy properties of 32 low-redshift superluminous supernovae from the Palomar Transient Factory. Astrophys. J. 830, 13 (2016).

    ADS 

    Google Scholar
     

  • 110.

    Kiewe, M. et al. Caltech Core-Collapse Project (CCCP) observations of type IIn supernovae: typical properties and implications for their progenitor stars. Astrophys. J. 744, 10 (2012).

    ADS 

    Google Scholar
     

  • 111.

    Rubin, A. et al. Type II supernova energetics and comparison of light curves to shock-cooling models. Astrophys. J. 820, 33 (2016).

    ADS 

    Google Scholar
     

  • 112.

    Yao, Y. et al. ZTF early observations of type Ia supernovae. I. properties of the 2018 sample. Astrophys. J. 886, 152 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 113.

    Miller, A. A. et al. ZTF early observations of type Ia supernovae. II. First light, the initial rise, and time to reach maximum brightness. Astrophys. J. 902, 47 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 114.

    Barbarino, C. et al. Type Ic supernovae from the (intermediate) Palomar Transient Factory. Preprint at https://arxiv.org/abs/2010.08392 (2020).

  • 115.

    Taddia, F. et al. Analysis of broad-lined Type Ic supernovae from the (intermediate) Palomar Transient Factory. Astron. Astrophys. 621, A71 (2019).

    CAS 

    Google Scholar
     

  • 116.

    Gal-Yam, A., Ofek, E. O. & Shemmer, O. Supernova 2002ap: the first month. Mon. Not. R. Astron. Soc. 332, L73–L77 (2002).

    ADS 

    Google Scholar
     

  • 117.

    Mazzali, P. A. et al. The type Ic hypernova SN 2002ap. Astrophys. J. 572, L61–L65 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 118.

    Galama, T. J. et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395, 670–672 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • 119.

    Campana, S. et al. The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature 442, 1008–1010 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 120.

    Bianco, F. B. et al. Multi-color optical and near-infrared light curves of 64 stripped-envelope core-collapse supernovae. Astrophys. J. Suppl. Ser. 213, 19 (2014).

    ADS 

    Google Scholar
     

  • 121.

    Richmond, M. W. et al. UBVRI photometry of the type Ic SN 1994I in M51. Astron. J 111, 327–339 (1996).

    ADS 

    Google Scholar
     

  • 122.

    Sauer, D. N. et al. The properties of the ‘standard’ type Ic supernova 1994I from spectral models. Mon. Not. R. Astron. Soc. 369, 1939–1948 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 123.

    Ben-Ami, S. et al. Discovery and early multi-wavelength measurements of the energetic type Ic supernova PTF12gzk: a massive-star explosion in a dwarf host galaxy. Astrophys. J. 760, L33 (2012).

    ADS 

    Google Scholar
     

  • 124.

    Cao, Y. et al. Discovery, progenitor and early evolution of a stripped envelope supernova iPTF13bvn. Astrophys. J. 775, L7 (2013).

    ADS 

    Google Scholar
     

  • 125.

    Stritzinger, M. et al. Optical photometry of the type Ia supernova 1999ee and the type Ib/c supernova 1999ex in IC 5179. Astron. J 124, 2100–2117 (2002).

    ADS 

    Google Scholar
     

  • 126.

    Mazzali, P. A. et al. The metamorphosis of supernova SN 2008D/XRF 080109: a link between supernovae and GRBs/hypernovae. Science 321, 1185–1188 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 127.

    Soderberg, A. M. et al. An extremely luminous X-ray outburst at the birth of a supernova. Nature 453, 469–474 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 128.

    Valenti, S. et al. SN 2009jf: a slow-evolving stripped-envelope core-collapse supernova. Mon. Not. R. Astron. Soc. 416, 3138–3159 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 129.

    Rest, A. et al. A fast-evolving luminous transient discovered by K2/Kepler. Nat. Astron. 2, 307–311 (2018).

    ADS 

    Google Scholar
     

  • 130.

    Whitesides, L. et al. iPTF 16asu: a luminous, rapidly evolving, and high-velocity supernova. Astrophys. J. 851, 107 (2017).

    ADS 

    Google Scholar
     

  • 131.

    Prentice, S. J. et al. The Cow: discovery of a luminous, hot, and rapidly evolving transient. Astrophys. J. 865, L3 (2018).

    ADS 

    Google Scholar
     

  • 132.

    Perley, D. A. et al. The fast, luminous ultraviolet transient AT2018cow: extreme supernova, or disruption of a star by an intermediate-mass black hole? Mon. Not. R. Astron. Soc. 484, 1031–1049 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 133.

    Margutti, R. et al. An embedded X-ray source shines through the aspherical AT 2018cow: revealing the inner workings of the most luminous fast-evolving optical transients. Astrophys. J. 872, 18 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 134.

    Mazzali, P. A. et al. The Type Ic SN 2007gr: a census of the ejecta from late-time optical-infrared spectra. Mon. Not. R. Astron. Soc. 408, 87–96 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 135.

    Soumagnac, M. T. et al. Supernova PTF 12glz: a possible shock breakout driven through an aspherical wind. Astrophys. J. 872, 141 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 136.

    Smith, N. et al. Episodic mass loss in binary evolution to the Wolf–Rayet phase: Keck and HST proper motions of RY Scuti’s nebula. Mon. Not. R. Astron. Soc. 418, 1959–1972 (2011).

    ADS 

    Google Scholar
     

  • 137.

    Waxman, E. & Katz, B. Shock breakout theory. In Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 967–1015 (2017); https://doi.org/10.1007/978-3-319-21846-5_33.

  • 138.

    Ganot, N. et al. The detection rate of early UV emission from supernovae: a dedicated GALEX/PTF survey and calibrated theoretical estimates. Astrophys. J. 820, 57 (2016).

    ADS 

    Google Scholar
     

  • 139.

    Ofek, E. O. et al. Supernova PTF 09UJ: a possible shock breakout from a dense circumstellar wind. Astrophys. J. 724, 1396–1401 (2010).

    ADS 

    Google Scholar
     

  • 140.

    Smith, N. et al. PTF11iqb: cool supergiant mass-loss that bridges the gap between Type IIn and normal supernovae. Mon. Not. R. Astron. Soc. 449, 1876–1896 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 141.

    Ben-Ami, S. et al. SN 2010mb: direct evidence for a supernova interacting with a large amount of hydrogen-free circumstellar material. Astrophys. J. 785, 37 (2014).

    ADS 

    Google Scholar
     

  • 142.

    Soumagnac, M. T. et al. SN 2018fif: the explosion of a large red supergiant discovered in its infancy by the Zwicky Transient Facility. Astrophys. J. 902, 6 (2020).

    ADS 
    CAS 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button