Galaxies

A radio transient with unusually slow periodic emission

  • 1.

    Lynch, C. R., Lenc, E., Kaplan, D. L., Murphy, T. & Anderson, G. E. 154 MHz detection of faint, polarized flares from UV Ceti. Astrophys. J. Lett. 836, L30 (2017).

    ADS 

    Google Scholar
     

  • 2.

    Vedantham, H. K. et al. Coherent radio emission from a quiescent red dwarf indicative of star–planet interaction. Nat. Astron. 4, 577–583 (2020).

    ADS 

    Google Scholar
     

  • 3.

    Swainston, N. A. et al. Discovery of a steep-spectrum low-luminosity pulsar with the Murchison Widefield Array. Astrophys. J. Lett. 911, L26 (2021).

    ADS 

    Google Scholar
     

  • 4.

    Yao, J. M., Manchester, R. N. & Wang, N. A new electron-density model for estimation of pulsar and FRB distances. Astrophys. J. 835, 29 (2017).

    ADS 

    Google Scholar
     

  • 5.

    Hutschenreuter, S. & Enßlin, T. A. The Galactic Faraday depth sky revisited. Astron. Astrophys. 633, A150 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 6.

    Vedantham, H. K. et al. Symmetric achromatic variability in active galaxies: a powerful new gravitational lensing probe? Astrophys. J. 845, 89 (2017).

    ADS 

    Google Scholar
     

  • 7.

    Bannister, K. W. et al. Real-time detection of an extreme scattering event: constraints on Galactic plasma lenses. Science 351, 354–356 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Benz, A. O. & Güdel, M. Physical processes in magnetically driven flares on the Sun, stars, and young stellar objects. Annu. Rev. Astron. Astrophys. 48, 241–287 (2010).

    ADS 

    Google Scholar
     

  • 9.

    Zarka, P., Treumann, R. A., Ryabov, B. P. & Ryabov, V. B. Magnetically-driven planetary radio emissions and application to extrasolar planets. Astrophys. Space Sci. 277, 293–300 (2001).

    ADS 

    Google Scholar
     

  • 10.

    Marsh, T. R. et al. A radio-pulsing white dwarf binary star. Nature 537, 374–377 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Hyman, S. D. et al. A powerful bursting radio source towards the Galactic Centre. Nature 434, 50–52 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Szary, A., Zhang, B., Melikidze, G. I., Gil, J. & Xu, R.-X. Radio efficiency of pulsars. Astrophys. J. 784, 59 (2014).

    ADS 

    Google Scholar
     

  • 13.

    Levin, L. et al. Radio emission evolution, polarimetry and multifrequency single pulse analysis of the radio magnetar PSR J1622–4950. Mon. Not. R. Astron. Soc. 422, 2489–2500 (2012).

    ADS 

    Google Scholar
     

  • 14.

    Rea, N., Pons, J. A., Torres, D. F. & Turolla, R. The fundamental plane for radio magnetars. Astrophys. J. Lett. 748, L12 (2012).

    ADS 

    Google Scholar
     

  • 15.

    Olausen, S. A. & Kaspi, V. M. The McGill magnetar catalog. Astrophys. J. Suppl. 212, 6 (2014).

    ADS 

    Google Scholar
     

  • 16.

    Carbone, D. et al. New methods to constrain the radio transient rate: results from a survey of four fields with LOFAR. Mon. Not. R. Astron. Soc. 459, 3161–3174 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Polisensky, E. et al. Exploring the transient radio sky with VLITE: early results. Astrophys. J. 832, 60 (2016).

    ADS 

    Google Scholar
     

  • 18.

    Stewart, A. J. et al. LOFAR MSSS: detection of a low-frequency radio transient in 400 h of monitoring of the North Celestial Pole. Mon. Not. R. Astron. Soc. 456, 2321–2342 (2016).

    ADS 

    Google Scholar
     

  • 19.

    Bell, M. E. et al. The Murchison Widefield Array Transients Survey (MWATS). A search for low-frequency variability in a bright Southern Hemisphere sample. Mon. Not. R. Astron. Soc. 482, 2484–2501 (2019).

    ADS 

    Google Scholar
     

  • 20.

    Hajela, A., Mooley, K. P., Intema, H. T. & Frail, D. A. A GMRT 150 MHz search for variables and transients in Stripe 82. Mon. Not. R. Astron. Soc. 490, 4898–4906 (2019).

    ADS 

    Google Scholar
     

  • 21.

    Keith, M. J. et al. The High Time Resolution Universe Pulsar Survey – I. System configuration and initial discoveries. Mon. Not. R. Astron. Soc. 409, 619–627 (2010).

    ADS 

    Google Scholar
     

  • 22.

    Cameron, A. D., Barr, E. D., Champion, D. J., Kramer, M. & Zhu, W. W. An investigation of pulsar searching techniques with the fast folding algorithm. Mon. Not. R. Astron. Soc. 468, 1994–2010 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    Hurley-Walker, N. et al. Galactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey – I. A low-frequency extragalactic catalogue. Mon. Not. R. Astron. Soc. 464, 1146–1167 (2017).

    ADS 

    Google Scholar
     

  • 24.

    Pietka, M., Fender, R. P. & Keane, E. F. The variability time-scales and brightness temperatures of radio flares from stars to supermassive black holes. Mon. Not. R. Astron. Soc. 446, 3687–3696 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    Tingay, S. J. et al. The Murchison Widefield Array: the square kilometre array precursor at low radio frequencies. Publ. Astron. Soc. Aust. 30, e007 (2013).

    ADS 

    Google Scholar
     

  • 26.

    Wayth, R. B. et al. The Phase II Murchison Widefield Array: design overview. Publ. Astron. Soc. Aust. 35, e033 (2018).

    ADS 

    Google Scholar
     

  • 27.

    Wayth, R. B. et al. GLEAM: the Galactic and Extragalactic All-Sky MWA survey. Publ. Astron. Soc. Aust. 32, e025 (2015).

    ADS 

    Google Scholar
     

  • 28.

    Offringa, A. R. et al. Parametrizing Epoch of Reionization foregrounds: a deep survey of low-frequency point-source spectra with the Murchison Widefield Array. Mon. Not. R. Astron. Soc. 458, 1057–1070 (2016).

    ADS 

    Google Scholar
     

  • 29.

    Hurley-Walker, N. et al. Galactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey II: galactic plane 345° < l < 67°, 180° < l < 240°. Publ. Astron. Soc. Aust. 36, e047 (2019).

    ADS 

    Google Scholar
     

  • 30.

    Offringa, A. R. et al. WSCLEAN: an implementation of a fast, generic wide-field imager for radio astronomy. Mon. Not. R. Astron. Soc. 444, 606–619 (2014).

    ADS 

    Google Scholar
     

  • 31.

    Sutinjo, A. et al. Understanding instrumental Stokes leakage in Murchison Widefield Array polarimetry. Radio Sci. 50, 52–65 (2015).

    ADS 

    Google Scholar
     

  • 32.

    Lenc, E. et al. The challenges of low-frequency radio polarimetry: lessons from the Murchison Widefield Array. Publ. Astron. Soc. Aust. 34, e040 (2017).

    ADS 

    Google Scholar
     

  • 33.

    Riseley, C. J. et al. The Polarised GLEAM Survey (POGS) I: first results from a low-frequency radio linear polarisation survey of the southern sky. Publ. Astron. Soc. Aust. 35, e043 (2018).

    ADS 

    Google Scholar
     

  • 34.

    Riseley, C. J. et al. The Polarised GLEAM Survey (POGS) II: results from an all-sky rotation measure synthesis survey at long wavelengths. Publ. Astron. Soc. Aust. 37, e029 (2020).

    ADS 

    Google Scholar
     

  • 35.

    Brentjens, M. A. & De Bruyn, A. Faraday rotation measure synthesis. Astron. Astrophys. 441, 1217–1228 (2005).

    ADS 

    Google Scholar
     

  • 36.

    Lafler, J. & Kinman, T. D. An RR Lyrae star survey with Ihe Lick 20-INCH Astrograph II. The calculation of RR Lyrae periods by electronic computer. Astrophys. J. Suppl. 11, 216 (1965).

    ADS 

    Google Scholar
     

  • 37.

    Stellingwerf, R. F. Period determination using phase dispersion minimization. Astrophys. J. 224, 953–960 (1978).

    ADS 

    Google Scholar
     

  • 38.

    Schwarzenberg-Czerny, A. Fast and statistically optimal period search in uneven sampled observations. Astrophys. J. Lett. 460, L107 (1996).

    ADS 

    Google Scholar
     

  • 39.

    Clarke, D. String/Rope length methods using the Lafler-Kinman statistic. Astron. Astrophys. 386, 763–774 (2002).

    ADS 

    Google Scholar
     

  • 40.

    Manchester, R. N., Hobbs, G. B., Teoh, A. & Hobbs, M. The Australia Telescope National Facility Pulsar Catalogue. Astron. J 129, 1993–2006 (2005).

    ADS 

    Google Scholar
     

  • 41.

    Hurley-Walker, N. & Hancock, P. J. De-distorting ionospheric effects in the image plane. Astron. Comput. 25, 94–102 (2018).

    ADS 

    Google Scholar
     

  • 42.

    Gehrels, N. et al. The Swift gamma-ray burst mission. Astrophys. J. 611, 1005–1020 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 43.

    Burrows, D. N. et al. The Swift X-ray telescope. Space Sci. Rev. 120, 165–195 (2005).

    ADS 

    Google Scholar
     

  • 44.

    NASA High Energy Astrophysics Science Archive Research Center (HEASARC). HEAsoft: Unified Release of FTOOLS and XANADU (2014).

  • 45.

    Champion, D. et al. High-cadence observations and variable spin behaviour of magnetar Swift J1818.0–1607 after its outburst. Mon. Not. R. Astron. Soc. 498, 6044–6056 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 46.

    Lorimer, D. R. & Kramer, M. Handbook of Pulsar Astronomy (Cambridge Univ. Press, 2012).

  • 47.

    Zhang, B., Harding, A. K. & Muslimov, A. G. Radio pulsar death line revisited: is PSR J2144–3933 anomalous? Astrophys. J. Lett. 531, L135–L138 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • https://www.nature.com/articles/s41586-021-04272-x

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button