Galaxies

Star formation near the Sun is driven by expansion of the Local Bubble

  • 1.

    Cox, D. P. & Reynolds, R. J. The local interstellar medium. Annu. Rev. Astron. Astrophys. 25, 303–344 (1987).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Lucke, P. B. The distribution of color excesses and interstellar reddening material in the solar neighborhood. Astron. Astrophys. 64, 367–377 (1978).

    ADS 

    Google Scholar
     

  • 3.

    Sanders, W. T., Kraushaar, W. L., Nousek, J. A. & Fried, P. M. Soft diffuse X-rays in the southern galactic hemisphere. Astrophys. J. Lett. 217, L87–L91 (1977).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    Lallement, R., Welsh, B. Y., Vergely, J. L., Crifo, F. & Sfeir, D. 3D mapping of the dense interstellar gas around the Local Bubble. Astron. Astrophys. 411, 447–464 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Welsh, B. Y., Lallement, R., Vergely, J.-L. & Raimond, S. New 3D gas density maps of NaI and CaII interstellar absorption within 300 pc. Astron. Astrophys. 510, A54 (2010).


    Google Scholar
     

  • 6.

    Fuchs, B., Breitschwerdt, D., de Avillez, M. A., Dettbarn, C. & Flynn, C. The search for the origin of the Local Bubble redivivus. Mon. Not. R. Astron. Soc. 373, 993–1003 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 7.

    Breitschwerdt, D. et al. The locations of recent supernovae near the Sun from modelling 60Fe transport. Nature. 532, 73–76 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Frisch, P. & Dwarkadas, V. V. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 2253–2285 (Springer International Publishing, 2017).

  • 9.

    Leike, R. H., Glatzle, M. & Enßlin, T. A. Resolving nearby dust clouds. Astron. Astrophys. 639, A138 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 10.

    Lallement, R. et al. Gaia-2MASS 3D maps of Galactic interstellar dust within 3 kpc. Astron. Astrophys. 625, A135 (2019).

    CAS 

    Google Scholar
     

  • 11.

    Zucker, C. et al. On the three-dimensional structure of local molecular clouds. Astrophys. J. 919, 35 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 12.

    Lindegren, L. et al. Gaia Early Data Release 3 – the astrometric solution. Astron. Astrophys. Suppl. Ser. 649, A2 (2021).


    Google Scholar
     

  • 13.

    Pelgrims, V., Ferrière, K., Boulanger, F., Lallement, R. & Montier, L. Modeling the magnetized Local Bubble from dust data. Astron. Astrophys. 636, A17 (2020).

    ADS 

    Google Scholar
     

  • 14.

    Welsh, B. Y., Sfeir, D. M., Sirk, M. M. & Lallement, R. EUV mapping of the local interstellar medium: the Local Chimney revealed? Astron. Astrophys. 352, 308–316 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 15.

    Bialy, S. et al. The Per-Tau Shell: a giant star-forming spherical shell revealed by 3D dust observations. Astrophys. J. Lett. 919, L5 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 16.

    Alves, J. et al. A Galactic-scale gas wave in the solar neighbourhood. Nature. 578, 237–239 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Großschedl, J. E., Alves, J., Meingast, S. & Herbst-Kiss, G. 3D dynamics of the Orion cloud complex – discovery of coherent radial gas motions at the 100-pc scale. Astron. Astrophys. Suppl. Ser. 647, A91 (2021).


    Google Scholar
     

  • 18.

    Perrot, C. A. & Grenier, I. A. 3D dynamical evolution of the interstellar gas in the Gould Belt. Astron. Astrophys. Suppl. Ser. 404, 519–531 (2003).

    CAS 

    Google Scholar
     

  • 19.

    Dzib, S. A., Loinard, L., Ortiz-León, G. N., Rodríguez, L. F. & Galli, P. A. B. Distances and kinematics of Gould Belt star-forming regions with Gaia DR2 results. Astrophys. J. 867, 151 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 20.

    Kerr, R. M. P., Rizzuto, A. C., Kraus, A. L. & Offner, S. S. R. Stars with Photometrically Young Gaia Luminosities Around the Solar System (SPYGLASS). I. Mapping young stellar structures and their star formation histories. Astrophys. J. 917, 23 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Maíz-Apellániz, J. The origin of the Local Bubble. Astrophys. J. Lett. 560, L83–L86 (2001).

    ADS 

    Google Scholar
     

  • 22.

    El-Badry, K., Ostriker, E. C., Kim, C.-G., Quataert, E. & Weisz, D. R. Evolution of supernovae-driven superbubbles with conduction and cooling. Mon. Not. R. Astron. Soc. 490, 1961–1990 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    Inutsuka, S.-I., Inoue, T., Iwasaki, K. & Hosokawa, T. The formation and destruction of molecular clouds and galactic star formation. An origin for the cloud mass function and star formation efficiency. Astron. Astrophys. 580, A49 (2015).


    Google Scholar
     

  • 24.

    Dawson, J. R. The supershell–molecular cloud connection: large-scale stellar feedback and the formation of the molecular ISM. Publ. Astron. Soc. Aust. 30, e025 (2013).

    ADS 

    Google Scholar
     

  • 25.

    Cox, D. P. & Smith, B. W. Large-scale effects of supernova remnants on the Galaxy: generation and maintenance of a hot network of tunnels. Astrophys. J. Lett. 189, L105–L108 (1974).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    McKee, C. F. & Ostriker, J. P. A theory of the interstellar medium: three components regulated by supernova explosions in an inhomogeneous substrate. Astrophys. J. 218, 148–169 (1977).

    ADS 
    CAS 

    Google Scholar
     

  • 27.

    Kim, C.-G., Ostriker, E. C. & Raileanu, R. Superbubbles in the multiphase ISM and the loading of Galactic winds. Astrophys. J. 834, 25 (2017).

    ADS 

    Google Scholar
     

  • 28.

    Galli, P. A. B. et al. Lupus DANCe. Census of stars and 6D structure with Gaia-DR2 data. Astron. Astrophys. 643, A148 (2020).


    Google Scholar
     

  • 29.

    Grasser, N. et al. The ρ Oph region revisited with Gaia EDR3. Astron. Astrophys. 652, A2 (2021)


    Google Scholar
     

  • 30.

    Galli, P. A. B. et al. Chamaeleon DANCe. Revisiting the stellar populations of Chamaeleon I and Chamaeleon II with Gaia-DR2 data. Astron. Astrophys. 646, A46 (2021).


    Google Scholar
     

  • 31.

    Galli, P. A. B. et al. Corona-Australis DANCe. I. Revisiting the census of stars with Gaia-DR2 data. Astron. Astrophys. 634, A98 (2020).


    Google Scholar
     

  • 32.

    Krolikowski, D. M., Kraus, A. L. & Rizzuto, A. C. Gaia EDR3 reveals the substructure and complicated star formation history of the Greater Taurus-Auriga star-forming complex. Astron. J. 162, 3 (2021).


    Google Scholar
     

  • 33.

    Gagné, J. & Faherty, J. K. BANYAN. XIII. A first look at nearby young associations with Gaia Data Release 2. Astrophys. J. 862, 138 (2018).

    ADS 

    Google Scholar
     

  • 34.

    Gagné, J. et al. BANYAN. XI. The BANYAN Σ multivariate Bayesian algorithm to identify members of young associations with 150 pc. Astrophys. J. 856, 23 (2018).

    ADS 

    Google Scholar
     

  • 35.

    Ortiz-León, G. N. et al. The Gould’s Belt Distances Survey (GOBELINS). V. Distances and kinematics of the Perseus Molecular Cloud. Astrophys. J. 865, 73 (2018).

    ADS 

    Google Scholar
     

  • 36.

    Herczeg, G. J. et al. An initial overview of the extent and structure of recent star formation within the Serpens molecular cloud using Gaia Data Release 2. Astrophys. J. 878, 111 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 37.

    Fabricius, C. et al. Gaia Early Data Release 3 – catalogue validation. Astron. Astrophys. Suppl. Ser. 649, A5 (2021).


    Google Scholar
     

  • 38.

    The Astropy Collaboration. The Astropy Project: building an open-science project and status of the v2.0 Core Package*. Astron. J. Supp. 156, 123 (2018).

    ADS 

    Google Scholar
     

  • 39.

    Bovy, J., Hogg, D. W. & Roweis, S. T. Extreme deconvolution: inferring complete distribution functions from noisy, heterogeneous and incomplete observations. Ann. Appl. Stat. 5, 1657–1677 (2011).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 40.

    Bovy, J. galpy: a Python library for Galactic dynamics. Astrophys. J. Supp. 216, 29 (2015).

    ADS 

    Google Scholar
     

  • 41.

    Kerr, F. J. & Lynden-Bell, D. Review of galactic constants. Mon. Not. R. Astron. Soc. 221, 1023–1038 (1986).

    ADS 

    Google Scholar
     

  • 42.

    Kamdar, H., Conroy, C. & Ting, Y.-S. Stellar streams in the Galactic disk: predicted lifetimes and their utility in measuring the galactic potential. Preprint at https://arxiv.org/abs/2106.02050v1 (2021).

  • 43.

    Speagle, J. S. dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).

    ADS 

    Google Scholar
     

  • 44.

    Salpeter, E. E. The luminosity function and stellar evolution. Astrophys. J. 121, 161 (1955).

    ADS 

    Google Scholar
     

  • 45.

    Gontcharov, G. & Mosenkov, A. Interstellar polarization and extinction in the Local Bubble and the Gould Belt. Mon. Not. R. Astron. Soc. 483, 299–314 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 46.

    Dehnen, W. & Binney, J. J. Local stellar kinematics from Hipparcos data. Mon. Not. R. Astron. Soc. 298, 387–394 (1998).

    ADS 

    Google Scholar
     

  • 47.

    Francis, C. & Anderson, E. Calculation of the local standard of rest from 20574 local stars in the New Hipparcos Reduction with known radial velocities. New Astron. 14, 615–629 (2009).

    ADS 

    Google Scholar
     

  • 48.

    Wang, F. et al. Local stellar kinematics and Oort constants from the LAMOST A-type stars. Mon. Not. R. Astron. Soc. 504, 199–207 (2021).

    ADS 

    Google Scholar
     

  • 49.

    Reid, M. J. et al. Trigonometric parallaxes of high-mass star-forming regions: our view of the Milky Way. Astrophys. J. 885, 131 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 50.

    Schönrich, R., Binney, J. & Dehnen, W. Local kinematics and the local standard of rest. Mon. Not. R. Astron. Soc. 403, 1829–1833 (2010).

    ADS 

    Google Scholar
     

  • 51.

    VanderPlas, J., Connolly, A. J., Ivezić, Ž. & Gray, A. Introduction to astroML: machine learning for astrophysics. In Proc. 2012 Conference on Intelligent Data Understanding 47–54 (IEEE, 2012).

  • https://www.nature.com/articles/s41586-021-04286-5

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button