Galaxies

A stellar stream remnant of a globular cluster below the metallicity floor

  • 1.

    Frebel, A. & Norris, J. E. Near-field cosmology with extremely metal-poor stars. Ann. Rev. Astron. Astrophys. 53, 631–688 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Yong, D. et al. The most metal-poor stars. III. The metallicity distribution function and carbon-enhanced metal-poor fraction. Astrophys. J. 762, 27 (2013).

    ADS 

    Google Scholar
     

  • 3.

    Li, H., Tan, K. & Zhao, G. A catalog of 10,000 very metal-poor stars from LAMOST DR3. Astrophys. J. Supp. 238, 16 (2018).

    ADS 

    Google Scholar
     

  • 4.

    Aguado, D. S. et al. The Pristine survey – VI. The first three years of medium-resolution follow-up spectroscopy of Pristine EMP star candidates. Mon. Not. R. Astron. Soc. 490, 2241–2253 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Beasley, M. A. et al. An old, metal-poor globular cluster in Sextans A and the metallicity floor of globular cluster systems. Mon. Not. R. Astron. Soc. 487, 1986–1993 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 6.

    Wan, Z. et al. The tidal remnant of an unusually metal-poor globular cluster. Nature 583, 768–770 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Kruijssen, J. M. D. The minimum metallicity of globular clusters and its physical origin – implications for the galaxy mass-metallicity relation and observations of proto-globular clusters at high redshift. Mon. Not. R. Astron. Soc. 486, L20–L25 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Ibata, R. et al. Charting the Galactic acceleration field. I. A search for stellar streams with Gaia DR2 and EDR3 with follow-up from ESPaDOnS and UVES. Astrophys. J. 914, 123 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Gaia Collaboration et al. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).


    Google Scholar
     

  • 10.

    Starkenburg, E. et al. The Pristine survey – I. Mining the Galaxy for the most metal-poor stars. Mon. Not. R. Astron. Soc. 471, 2587–2604 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Harris, W. E. A catalog of parameters for globular clusters in the Milky Way. Astron. J. 112, 1487 (1996).

    ADS 

    Google Scholar
     

  • 12.

    Willman, B. & Strader, J. ”Galaxy,” defined. Astron. J. 144, 76 (2012).

    ADS 

    Google Scholar
     

  • 13.

    Leaman, R. Insights into pre-enrichment of star clusters and self-enrichment of dwarf galaxies from their intrinsic metallicity dispersions. Astron. J. 144, 183 (2012).

    ADS 

    Google Scholar
     

  • 14.

    Kirby, E. N. et al. The universal stellar mass-stellar metallicity relation for dwarf galaxies. Astrophys. J. 779, 102 (2013).

    ADS 

    Google Scholar
     

  • 15.

    Gratton, R. G., Carretta, E. & Bragaglia, A. Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters. Astron. Astrophys. R. 20, 50 (2012).

    ADS 

    Google Scholar
     

  • 16.

    Bastian, N. & Lardo, C. Multiple stellar populations in globular clusters. Ann. Rev. Astron. Astrophys. 56, 83–136 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Ji, A. P. et al. The Southern Stellar Stream Spectroscopic Survey (S5): chemical abundances of seven stellar streams. Astron. J. 160, 181 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Roederer, I. U. Are there any stars lacking neutron-capture elements? Evidence from strontium and barium. Astron. J. 145, 26 (2013).

    ADS 

    Google Scholar
     

  • 19.

    Côté, B. et al. Neutron star mergers might not be the only source of r-process elements in the Milky Way. Astrophys. J. 875, 106 (2019).

    ADS 

    Google Scholar
     

  • 20.

    Ji, A. P., Frebel, A., Simon, J. D. & Chiti, A. Complete element abundances of nine stars in the r-process galaxy Reticulum II. Astrophys. J. 830, 93 (2016).

    ADS 

    Google Scholar
     

  • 21.

    Hansen, T. T. et al. An r-process enhanced star in the dwarf galaxy Tucana III. Astrophys. J. 838, 44 (2017).

    ADS 

    Google Scholar
     

  • 22.

    Roederer, I. U. Primordial r-process dispersion in metal-poor globular clusters. Astrophys. J. Lett. 732, L17 (2011).

    ADS 

    Google Scholar
     

  • 23.

    Yoon, J. et al. Galactic archeology with the AEGIS survey: the evolution of carbon and iron in the Galactic halo. Astrophys. J. 861, 146 (2018).

    ADS 

    Google Scholar
     

  • 24.

    Norris, J. E. et al. The most metal-poor stars. IV. The two populations with [Fe/H] < −3.0. Astrophys. J. 762, 28 (2013).

    ADS 

    Google Scholar
     

  • 25.

    Youakim, K. et al. The Pristine survey – VIII. The metallicity distribution function of the Milky Way halo down to the extremely metal-poor regime. Mon. Not. R. Astron. Soc. 492, 4986–5002 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Roederer, I. U. & Gnedin, O. Y. High-resolution optical spectroscopy of stars in the Sylgr stellar stream. Astrophys. J. 883, 84 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 27.

    Larsen, S. S., Romanowsky, A. J., Brodie, J. P. & Wasserman, A. An extremely metal-deficient globular cluster in the Andromeda galaxy. Science 370, 970–973 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 28.

    Bonaca, A., Hogg, D. W., Price-Whelan, A. M. & Conroy, C. The spur and the gap in GD-1: dynamical evidence for a dark substructure in the Milky Way halo. Astrophys. J. 880, 38 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 29.

    Ibata, R. A., Lewis, G. F. & Martin, N. F. Feeling the pull: a study of natural galactic accelerometers. I. Photometry of the delicate stellar stream of the Palomar 5 globular cluster. Astrophys. J. 819, 1 (2016).

    ADS 

    Google Scholar
     

  • 30.

    Erkal, D., Koposov, S. E. & Belokurov, V. A sharper view of Pal 5’s tails: discovery of stream perturbations with a novel non-parametric technique. Mon. Not. R. Astron. Soc. 470, 60–84 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 31.

    Ma, X. et al. The origin and evolution of the galaxy mass-metallicity relation. Mon. Not. R. Astron. Soc. 456, 2140–2156 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 32.

    Kielty, C. L. et al. The Pristine survey – XII. Gemini-GRACES chemo-dynamical study of newly discovered extremely metal-poor stars in the Galaxy. Mon. Not. R. Astron. Soc. 506, 1438–1461 (2021).

    ADS 

    Google Scholar
     

  • 33.

    Malhan, K., Ibata, R. A. & Martin, N. F. Ghostly tributaries to the Milky Way: charting the halo’s stellar streams with the Gaia DR2 catalogue. Mon. Not. R. Astron. Soc. 481, 3442–3455 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 34.

    Carlberg, R. G. Globular clusters in a cosmological N-body simulation. Astrophys. J. 861, 69 (2018).

    ADS 

    Google Scholar
     

  • 35.

    Malhan, K., Ibata, R. A., Carlberg, R. G., Valluri, M. & Freese, K. Butterfly in a cocoon, understanding the origin and morphology of globular cluster streams: the case of GD-1. Astrophys. J. 881, 106 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    Martin, N. F. et al. The Pristine survey – XVI. The metallicity of 21 stellar streams around the Milky Way detected with the STREAMFINDER in Gaia EDR3. Mon. Not. R. Astron. Soc submitted (2021).

  • 37.

    Bressan, A. et al. PARSEC: stellar tracks and isochrones with the PAdova and TRieste stellar evolution code. Mon. Not. R. Astron. Soc. 427, 127–145 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 38.

    Maraston, C. Evolutionary population synthesis: models, analysis of the ingredients and application to high-z galaxies. Mon. Not. R. Astron. Soc. 362, 799–825 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 39.

    Deason, A. J., Belokurov, V. & Evans, N. W. The Milky Way stellar halo out to 40 kpc: squashed, broken but smooth. Mon. Not. R. Astron. Soc. 416, 2903–2915 (2011).

    ADS 

    Google Scholar
     

  • 40.

    Lindegren, L. et al. Gaia Early Data Release 3. Parallax bias versus magnitude, colour, and position. Astron. Astrophys. 649, A4 (2021).


    Google Scholar
     

  • 41.

    Ibata, R. A., Malhan, K., Martin, N. F. & Starkenburg, E. Phlegethon, a nearby 75-degree-long retrograde Stellar Stream. Astrophys. J. 865, 85 (2018).

    ADS 

    Google Scholar
     

  • 42.

    Chene, A.-N. et al. in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9151 (eds. Navarro, R. et al.) 915147 (SPIE, 2014).

  • 43.

    Pazder, J., Fournier, P., Pawluczyk, R. & van Kooten, M. in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9151 (eds. Navarro, R. et al.) 915124 (SPIE, 2014).

  • 44.

    Martioli, E. et al. in Software and Cyberinfrastructure for Astronomy II Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8451 (eds. Radziwill, N. M. & Chiozzi, G.) 84512B (SPIE, 2012).

  • 45.

    Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525 (1998).

    ADS 

    Google Scholar
     

  • 46.

    Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    ADS 

    Google Scholar
     

  • 47.

    González Hernández, J. I. & Bonifacio, P. A new implementation of the infrared flux method using the 2MASS catalogue. Astron. Astrophys. 497, 497–509 (2009).

    ADS 

    Google Scholar
     

  • 48.

    Mucciarelli, A., Bellazzini, M. & Massari, D. Exploiting the Gaia EDR3 photometry to derive stellar temperatures. Astron. Astrophys. (in the press).

  • 49.

    Mashonkina, L., Jablonka, P., Pakhomov, Y., Sitnova, T. & North, P. The formation of the Milky Way halo and its dwarf satellites; a NLTE-1D abundance analysis. I. Homogeneous set of atmospheric parameters. Astron. Astrophys. 604, A129 (2017).

    ADS 

    Google Scholar
     

  • 50.

    Karovicova, I. et al. Fundamental stellar parameters of benchmark stars from CHARA interferometry. I. Metal-poor stars. Astron. Astrophys. 640, A25 (2020).

    CAS 

    Google Scholar
     

  • 51.

    Giribaldi, R. E., da Silva, A. R., Smiljanic, R. & Cornejo Espinoza, D. TITANS metal-poor reference stars. I. Accurate effective temperatures and surface gravities for dwarfs and subgiants from 3D non-LTE H α profiles and Gaia parallaxes. Astron. Astrophys. 650, A194 (2021).

    CAS 

    Google Scholar
     

  • 52.

    Kurucz, R. L. ATLAS12, SYNTHE, ATLAS9, WIDTH9, et cetera. Mem. Soc. Astron. Ital. Suppl. 8, 14 (2005).

    ADS 

    Google Scholar
     

  • 53.

    Sneden, C. A. Carbon and Nitrogen Abundances in Metal-Poor Stars. PhD thesis, Univ. of Texas at Austin (1973).

  • 54.

    Sobeck, J. S. et al. The abundances of neutron-capture species in the very metal-poor globular cluster M15: a uniform analysis of red giant branch and red horizontal branch stars. Astron. J. 141, 175 (2011).

    ADS 

    Google Scholar
     

  • 55.

    Placco, V. M. et al. Linemake: an atomic and molecular line list generator. Res. Notes AAS 5, 92 (2021).

    ADS 

    Google Scholar
     

  • 56.

    http://inspect-stars.net.

  • 57.

    http://nlte.mpia.de.

  • 58.

    Lind, K., Bergemann, M. & Asplund, M. Non-LTE line formation of Fe in late-type stars – II. 1D spectroscopic stellar parameters. Mon. Not. R. Astron. Soc. 427, 50–60 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 59.

    Bergemann, M. & Cescutti, G. Chromium: NLTE abundances in metal-poor stars and nucleosynthesis in the Galaxy (2010).

  • 60.

    Bergemann, M., Lind, K., Collet, R., Magic, Z. & Asplund, M. Non-LTE line formation of Fe in late-type stars – I. Standard stars with 1D and <3D> model atmospheres. Mon. Not. R. Astron. Soc. 427, 27–49 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 61.

    Mashonkina, L., Korn, A. J. & Przybilla, N. A non-LTE study of neutral and singly-ionized calcium in late-type stars. Astron. Astrophys. 461, 261–275 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 62.

    Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Ann. Rev. Astron. Astrophys. 47, 481–522 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 63.

    Tody, D. in Astronomical Data Analysis Software and Systems II Astronomical Society of the Pacific Conference Series, Vol. 52 (eds. Hanisch, R. J. et al.) 173 (1993).

  • 64.

    Aguado, D. S., Allende Prieto, C., González Hernández, J. I., Rebolo, R. & Caffau, E. New ultra metal-poor stars from SDSS: follow-up GTC medium-resolution spectroscopy. Astron. Astrophys. 604, A9 (2017).

    ADS 

    Google Scholar
     

  • 65.

    Aguado, D. S., González Hernández, J. I., Allende Prieto, C. & Rebolo, R. J0815+4729: a chemically primitive dwarf star in the galactic halo observed with Gran Telescopio Canarias. Astrophys. J. Lett. 852, L20 (2018).

    ADS 

    Google Scholar
     

  • 66.

    Allende Prieto, C. et al. Deep SDSS optical spectroscopy of distant halo stars. I. Atmospheric parameters and stellar metallicity distribution. Astron. Astrophys. 568, A7 (2014).


    Google Scholar
     

  • 67.

    Aguado, D. S., González Hernández, J. I., Allende Prieto, C. & Rebolo, R. WHT follow-up observations of extremely metal-poor stars identified from SDSS and LAMOST. Astron. Astrophys. 605, A40 (2017).

    ADS 

    Google Scholar
     

  • 68.

    Koesterke, L., Allende Prieto, C. & Lambert, D. L. Center-to-limb variation of solar three-dimensional hydrodynamical simulations. Astrophys. J. 680, 764–773 (2008).

    ADS 

    Google Scholar
     

  • 69.

    Boender, C. G. E., Rinnoy Kan, A. H. G., Timmer, G. T. & Stougie, L. A stochastic method for global optimization. Math. Program. 22, 125 (1982).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 70.

    Wenger, M. et al. The SIMBAD astronomical database. The CDS reference database for astronomical objects. Astron. Astrophys. Suppl. Ser. 143, 9–22 (2000).

    ADS 

    Google Scholar
     

  • 71.

    Ochsenbein, F., Bauer, P. & Marcout, J. The VizieR database of astronomical catalogues. Astron. Astrophys. Suppl. Ser. 143, 23–32 (2000).

    ADS 

    Google Scholar
     

  • 72.

    http://www.inasan.rssi.ru/~lima/pristine.

  • https://www.nature.com/articles/s41586-021-04162-2

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button